Biblio
As robotic capabilities improve and robots become more capable as team members, a better understanding of effective human-robot teaming is needed. In this paper, we investigate failures by robots in various team configurations in space EVA operations. This paper describes the methodology of extending and the application of Work Models that Compute (WMC), a computational simulation framework, to model robot failures, interruptions, and the resolutions they require. Using these models, we investigate how different team configurations respond to a robot's failure to correctly complete the task and overall mission. We also identify key factors that impact the teamwork metrics for team designers to keep in mind while assembling teams and assigning taskwork to the agents. We highlight different metrics that these failures impact on team performance through varying components of teaming and interaction that occur. Finally, we discuss the future implications of this work and the future work to be done to investigate function allocation in human-robot teams.
Mobile and aerial robots used in urban search and rescue (USAR) operations have shown the potential for allowing us to explore, survey and assess collapsed structures effectively at a safe distance. RGB-D cameras, such as the Microsoft Kinect, allow us to capture 3D depth data in addition to RGB images, providing a significantly richer user experience than flat video, which may provide improved situational awareness for first responders. However, the richer data comes at a higher cost in terms of data throughput and computing power requirements. In this paper we consider the problem of live streaming RGB-D data over wired and wireless communication channels, using low-power, embedded computing equipment. When assessing a disaster environment, a range camera is typically mounted on a ground or aerial robot along with the onboard computer system. Ground robots can use both wireless radio and tethers for communications, whereas aerial robots can only use wireless communication. We propose a hybrid lossless and lossy streaming compression format designed specifically for RGB-D data and investigate the feasibility and usefulness of live-streaming this data in disaster situations.