Biblio
NDN is a promising protocol that can help to reduce congestion at Internet scale by putting content at the center of communications instead of hosts, and by providing each node with a caching capability. NDN can also natively authenticate transmitted content with a mechanism similar to website certificates that allows clients to assess the original provider. But this security feature comes at a high cost, as it relies heavily on asymmetric cryptography which affects server performance when NDN Data are generated. This is particularly critical for many services dealing with real-time data (VOIP, live streaming, etc.), but current tools are not adapted for a realistic server-side performance evaluation of NDN traffic generation when digital signature is used. We propose a new tool, NDNperf, to perform this evaluation and show that creating NDN packets is a major bottleneck of application performances. On our testbed, 14 server cores only generate \textbackslashtextasciitilde400 Mbps of new NDN Data with default packet settings. We propose and evaluate practical solutions to improve the performance of server-side NDN Data generation leading to significant gains.
Mobile and aerial robots used in urban search and rescue (USAR) operations have shown the potential for allowing us to explore, survey and assess collapsed structures effectively at a safe distance. RGB-D cameras, such as the Microsoft Kinect, allow us to capture 3D depth data in addition to RGB images, providing a significantly richer user experience than flat video, which may provide improved situational awareness for first responders. However, the richer data comes at a higher cost in terms of data throughput and computing power requirements. In this paper we consider the problem of live streaming RGB-D data over wired and wireless communication channels, using low-power, embedded computing equipment. When assessing a disaster environment, a range camera is typically mounted on a ground or aerial robot along with the onboard computer system. Ground robots can use both wireless radio and tethers for communications, whereas aerial robots can only use wireless communication. We propose a hybrid lossless and lossy streaming compression format designed specifically for RGB-D data and investigate the feasibility and usefulness of live-streaming this data in disaster situations.