Visible to the public Biblio

Filters: Keyword is variational mode decomposition  [Clear All Filters]
2023-02-02
Zhang, Yanjun, Zhao, Peng, Han, Ziyang, Yang, Luyu, Chen, Junrui.  2022.  Low Frequency Oscillation Mode Identification Algorithm Based on VMD Noise Reduction and Stochastic Subspace Method. 2022 Power System and Green Energy Conference (PSGEC). :848–852.
Low-frequency oscillation (LFO) is a security and stability issue that the power system focuses on, measurement data play an important role in online monitoring and analysis of low-frequency oscillation parameters. Aiming at the problem that the measurement data containing noise affects the accuracy of modal parameter identification, a VMD-SSI modal identification algorithm is proposed, which uses the variational modal decomposition algorithm (VMD) for noise reduction combined with the stochastic subspace algorithm for identification. The VMD algorithm decomposes and reconstructs the initial signal with certain noise, and filters out the noise signal. Then, the optimized signal is input into stochastic subspace identification algorithm(SSI), the modal parameters is obtained. Simulation of a three-machine ninenode system verifies that the VMD-SSI mode identification algorithm has good anti-noise performance.
2022-09-09
Guo, Shaoying, Xu, Yanyun, Huang, Weiqing, Liu, Bo.  2021.  Specific Emitter Identification via Variational Mode Decomposition and Histogram of Oriented Gradient. 2021 28th International Conference on Telecommunications (ICT). :1—6.
Specific emitter identification (SEI) is a physical-layer-based approach for enhancing wireless communication network security. A well-done SEI method can be widely applied in identifying the individual wireless communication device. In this paper, we propose a novel specific emitter identification method based on variational mode decomposition and histogram of oriented gradient (VMD-HOG). The signal is decomposed into specific temporal modes via VMD and HOG features are obtained from the time-frequency spectrum of temporal modes. The performance of the proposed method is evaluated both in single hop and relaying scenarios and under three channels with the number of emitters varying. Results depict that our proposed method provides great identification performance for both simulated signals and realistic data of Zigbee devices and outperforms the two existing methods in identification accuracy and computational complexity.
2022-04-22
Deng, Weimin, Xu, Da, Xu, Yuhan, Li, Mengshi.  2021.  Detection and Classification of Power Quality Disturbances Using Variational Mode Decomposition and Convolutional Neural Networks. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :1514—1518.
Power quality gains more and more attentions because disturbances in power quality may damage equipment security, power availability and system reliability in power system. Detection and classification of the power quality disturbances is the first step before taking measures to lessen their harmful effects. Common methods to classify power quality disturbances includes signal processing methods, machine learning methods and deep learning methods. Signal processing methods are good at feature extraction, while machine learning methods and deep learning methods are expert in multi-classification tasks. Via combing their respective advantages, this paper proposes a combined method based on variational mode decomposition and convolutional neural networks, which needs a small quantity of samples but achieves high classification precision. The proposed method is proved to be a qualified and competitive scheme for the detection and classification of power quality disturbances.