Visible to the public Biblio

Found 944 results

Filters: Keyword is Internet  [Clear All Filters]
2020-05-11
Ma, Yuxiang, Wu, Yulei, Ge, Jingguo, Li, Jun.  2018.  A Flow-Level Architecture for Balancing Accountability and Privacy. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :984–989.
With the rapid development of the Internet, flow-based approach has attracted more and more attention. To this end, this paper presents a new and efficient architecture to balance accountability and privacy based on network flows. A self-certifying identifier is proposed to efficiently identify a flow. In addition, a delegate-registry cooperation scheme and a multi-delegate mechanism are developed to ensure users' privacy. The effectiveness and overhead of the proposed architecture are evaluated by virtue of the real trace collected from an Internet service provider. The experimental results show that our architecture can achieve a better network performance in terms of lower resource consumption, lower response time, and higher stability.
Chae, Younghun, Katenka, Natallia, DiPippo, Lisa.  2019.  An Adaptive Threshold Method for Anomaly-based Intrusion Detection Systems. 2019 IEEE 18th International Symposium on Network Computing and Applications (NCA). :1–4.
Anomaly-based Detection Systems (ADSs) attempt to learn the features of behaviors and events of a system and/or users over a period to build a profile of normal behaviors. There has been a growing interest in ADSs and typically conceived as more powerful systems One of the important factors for ADSs is an ability to distinguish between normal and abnormal behaviors in a given period. However, it is getting complicated due to the dynamic network environment that changes every minute. It is dangerous to distinguish between normal and abnormal behaviors with a fixed threshold in a dynamic environment because it cannot guarantee the threshold is always an indication of normal behaviors. In this paper, we propose an adaptive threshold for a dynamic environment with a trust management scheme for efficiently managing the profiles of normal and abnormal behaviors. Based on the assumption of the statistical analysis-based ADS that normal data instances occur in high probability regions while malicious data instances occur in low probability regions of a stochastic model, we set two adaptive thresholds for normal and abnormal behaviors. The behaviors between the two thresholds are classified as suspicious behaviors, and they are efficiently evaluated with a trust management scheme.
Anand Sukumar, J V, Pranav, I, Neetish, MM, Narayanan, Jayasree.  2018.  Network Intrusion Detection Using Improved Genetic k-means Algorithm. 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :2441–2446.
Internet is a widely used platform nowadays by people across the globe. This has led to the advancement in science and technology. Many surveys show that network intrusion has registered a consistent increase and lead to personal privacy theft and has become a major platform for attack in the recent years. Network intrusion is any unauthorized activity on a computer network. Hence there is a need to develop an effective intrusion detection system. In this paper we acquaint an intrusion detection system that uses improved genetic k-means algorithm(IGKM) to detect the type of intrusion. This paper also shows a comparison between an intrusion detection system that uses the k-means++ algorithm and an intrusion detection system that uses IGKM algorithm while using smaller subset of kdd-99 dataset with thousand instances and the KDD-99 dataset. The experiment shows that the intrusion detection that uses IGKM algorithm is more accurate when compared to k-means++ algorithm.
2020-05-04
Whittington, Christopher, Cady, Edward, Ratchen, Daniel, Dawji, Yunus.  2018.  Re-envisioning digital architectures connecting CE hardware for security, reliability and low energy. 2018 IEEE International Conference on Consumer Electronics (ICCE). :1–6.
Exponential growth of data produced and consumed by consumer electronic systems will strain data connectivity technologies beyond the next ten years. A private universal data platform is therefore required to connect CE Hardware for improved security, reliability and energy use. A novel Push-Pull data network architecture is hereto presented, employing multiple bridged peripheral links to create an ultra-fast, ultra-secure, private and low power data network to connect nearly any system. Bridging standard USB 3.0 technologies, we demonstrate a universally secure, ultra-low power and scalable switchable data platform offering the highest level of data privacy, security and performance. Delivering up to 12 times the throughput speeds of existing USB 3.0 data transfer cables, the presented solution builds on the reliability of universal peripheral communications links using proven ports, protocols and low-power components. A “Software Constructed” ad-hoc circuit network, the presented digital architecture delivers frictionless adoption and exceptional price-performance measures connecting both existing and future CE hardware.
2020-04-24
Chen, Lin, William Atwood, J..  2018.  Performance Evaluation for Secure Internet Group Management Protocol and Group Security Association Management Protocol. 2018 IEEE Canadian Conference on Electrical Computer Engineering (CCECE). :1—5.

Multicast distribution employs the model of many-to-many so that it is a more efficient way of data delivery compared to traditional one-to-one unicast distribution, which can benefit many applications such as media streaming. However, the lack of security features in its nature makes multicast technology much less popular in an open environment such as the Internet. Internet Service Providers (ISPs) take advantage of IP multicast technology's high efficiency of data delivery to provide Internet Protocol Television (IPTV) to their users. But without the full control on their networks, ISPs cannot collect revenue for the services they provide. Secure Internet Group Management Protocol (SIGMP), an extension of Internet Group Management Protocol (IGMP), and Group Security Association Management Protocol (GSAM), have been proposed to enforce receiver access control at the network level of IP multicast. In this paper, we analyze operational details and issues of both SIGMP and GSAM. An examination of the performance of both protocols is also conducted.

2020-04-20
Mahmoud, Ahmed Y., Alqumboz, Mohammed Naji Abu.  2019.  Encryption Based On Multilevel Security for Relational Database EBMSR. 2019 International Conference on Promising Electronic Technologies (ICPET). :130–135.
Cryptography is one of the most important sciences today because of the importance of data and the possibility of sharing data via the Internet. Therefore, data must be preserved when stored or transmitted over the Internet. Encryption is used as a solution to protect information during the transmission via an open channel. If the information is obtained illegally, the opponent/ enemy will not be able to understand the information due to encryption. In this paper we have developed a cryptosystem for testing the concepts of multi security level. The information is encrypted using more than one encryption algorithm based on the security level. The proposed cryptosystem concerns of Encryption Based on Multilevel Security (MLS) Model for DBMS. The cryptosystem is designed for both encryption and decryption.
Takbiri, Nazanin, Shao, Xiaozhe, Gao, Lixin, Pishro-Nik, Hossein.  2019.  Improving Privacy in Graphs Through Node Addition. 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton). :487–494.

The rapid growth of computer systems which generate graph data necessitates employing privacy-preserving mechanisms to protect users' identity. Since structure-based de-anonymization attacks can reveal users' identity's even when the graph is simply anonymized by employing naïve ID removal, recently, k- anonymity is proposed to secure users' privacy against the structure-based attack. Most of the work ensured graph privacy using fake edges, however, in some applications, edge addition or deletion might cause a significant change to the key property of the graph. Motivated by this fact, in this paper, we introduce a novel method which ensures privacy by adding fake nodes to the graph. First, we present a novel model which provides k- anonymity against one of the strongest attacks: seed-based attack. In this attack, the adversary knows the partial mapping between the main graph and the graph which is generated using the privacy-preserving mechanisms. We show that even if the adversary knows the mapping of all of the nodes except one, the last node can still have k- anonymity privacy. Then, we turn our attention to the privacy of the graphs generated by inter-domain routing against degree attacks in which the degree sequence of the graph is known to the adversary. To ensure the privacy of networks against this attack, we propose a novel method which tries to add fake nodes in a way that the degree of all nodes have the same expected value.

Lim, Yeon-sup, Srivatsa, Mudhakar, Chakraborty, Supriyo, Taylor, Ian.  2018.  Learning Light-Weight Edge-Deployable Privacy Models. 2018 IEEE International Conference on Big Data (Big Data). :1290–1295.
Privacy becomes one of the important issues in data-driven applications. The advent of non-PC devices such as Internet-of-Things (IoT) devices for data-driven applications leads to needs for light-weight data anonymization. In this paper, we develop an anonymization framework that expedites model learning in parallel and generates deployable models for devices with low computing capability. We evaluate our framework with various settings such as different data schema and characteristics. Our results exhibit that our framework learns anonymization models up to 16 times faster than a sequential anonymization approach and that it preserves enough information in anonymized data for data-driven applications.
Lim, Yeon-sup, Srivatsa, Mudhakar, Chakraborty, Supriyo, Taylor, Ian.  2018.  Learning Light-Weight Edge-Deployable Privacy Models. 2018 IEEE International Conference on Big Data (Big Data). :1290–1295.
Privacy becomes one of the important issues in data-driven applications. The advent of non-PC devices such as Internet-of-Things (IoT) devices for data-driven applications leads to needs for light-weight data anonymization. In this paper, we develop an anonymization framework that expedites model learning in parallel and generates deployable models for devices with low computing capability. We evaluate our framework with various settings such as different data schema and characteristics. Our results exhibit that our framework learns anonymization models up to 16 times faster than a sequential anonymization approach and that it preserves enough information in anonymized data for data-driven applications.
2020-04-17
Zollner, Stephan, Choo, Kim-Kwang Raymond, Le-Khac, Nhien-An.  2019.  An Automated Live Forensic and Postmortem Analysis Tool for Bitcoin on Windows Systems. IEEE Access. 7:158250—158263.

Bitcoin is popular not only with consumers, but also with cybercriminals (e.g., in ransomware and online extortion, and commercial online child exploitation). Given the potential of Bitcoin to be involved in a criminal investigation, the need to have an up-to-date and in-depth understanding on the forensic acquisition and analysis of Bitcoins is crucial. However, there has been limited forensic research of Bitcoin in the literature. The general focus of existing research is on postmortem analysis of specific locations (e.g. wallets on mobile devices), rather than a forensic approach that combines live data forensics and postmortem analysis to facilitate the identification, acquisition, and analysis of forensic traces relating to the use of Bitcoins on a system. Hence, the latter is the focus of this paper where we present an open source tool for live forensic and postmortem analysing automatically. Using this open source tool, we describe a list of target artifacts that can be obtained from a forensic investigation of popular Bitcoin clients and Web Wallets on different web browsers installed on Windows 7 and Windows 10 platforms.

Mueller, Tobias, Klotzsche, Daniel, Herrmann, Dominik, Federrath, Hannes.  2019.  Dangers and Prevalence of Unprotected Web Fonts. 2019 International Conference on Software, Telecommunications and Computer Networks (SoftCOM). :1—5.

Most Web sites rely on resources hosted by third parties such as CDNs. Third parties may be compromised or coerced into misbehaving, e.g. delivering a malicious script or stylesheet. Unexpected changes to resources hosted by third parties can be detected with the Subresource Integrity (SRI) mechanism. The focus of SRI is on scripts and stylesheets. Web fonts cannot be secured with that mechanism under all circumstances. The first contribution of this paper is to evaluates the potential for attacks using malicious fonts. With an instrumented browser we find that (1) more than 95% of the top 50,000 Web sites of the Tranco top list rely on resources hosted by third parties and that (2) only a small fraction employs SRI. Moreover, we find that more than 60% of the sites in our sample use fonts hosted by third parties, most of which are being served by Google. The second contribution of the paper is a proof of concept of a malicious font as well as a tool for automatically generating such a font, which targets security-conscious users who are used to verifying cryptographic fingerprints. Software vendors publish such fingerprints along with their software packages to allow users to verify their integrity. Due to incomplete SRI support for Web fonts, a third party could force a browser to load our malicious font. The font targets a particular cryptographic fingerprint and renders it as a desired different fingerprint. This allows attackers to fool users into believing that they download a genuine software package although they are actually downloading a maliciously modified version. Finally, we propose countermeasures that could be deployed to protect the integrity of Web fonts.

Joseph, Justin, Bhadauria, Saumya.  2019.  Cookie Based Protocol to Defend Malicious Browser Extensions. 2019 International Carnahan Conference on Security Technology (ICCST). :1—6.
All popular browsers support browser extensions. They are small software module for customizing web browsers. It provides extra features like user interface modifications, ad blocking, cookie management and so on. As features increase, security becomes more difficult. The impact of malicious browser extensions is also enormous. More than 1 million Chrome users got affected by extensions from Chrome store itself. [1] The risk further increases with offline extension installations. The privileges browser extensions have, pave the path for many kinds of attacks. Replay attack and session hijacking are two of these attacks we are dealing here. Here we propose a defence system based on dynamic encrypted cookies to defend these attacks. We use cookies as token for continuous authentication, which protects entire communication. Static cookies are prone for session hijacking, and therefore we use dynamic cookies which are sealed with encryption. It also protects from replay attack by changing itself, making previous message obsolete. This essentially solves both of the problems.
Mohsen, Fadi, Jafaarian, Haadi.  2019.  Raising the Bar Really High: An MTD Approach to Protect Data in Embedded Browsers. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:786—794.
The safety of web browsers is essential to the privacy of Internet users and the security of their computing systems. In the last few years, there have been several cyber attacks geared towards compromising surfers' data and systems via exploiting browser-based vulnerabilities. Android and a number of mobile operating systems have been supporting a UI component called WebView, which can be embedded in any mobile application to render the web contents. Yet, this mini-browser component has been found to be vulnerable to various kinds of attacks. For instance, an attacker in her WebView-Embedded app can inject malicious JavaScripts into the WebView to modify the web contents or to steal user's input values. This kind of attack is particularly challenging due to the full control of attackers over the content of the loaded pages. In this paper, we are proposing and testing a server-side moving target defense technique to counter the risk of JavaScript injection attacks on mobile WebViews. The solution entails creating redundant HTML forms, randomizing their attributes and values, and asserting stealthy prompts for the user data. The solution does not dictate any changes to the browser or applications codes, neither it requires key sharing with benign clients. The results of our performance and security analysis suggest that our proposed approach protects the confidentiality and integrity of user input values with minimum overhead.
Stark, Emily, Sleevi, Ryan, Muminovic, Rijad, O'Brien, Devon, Messeri, Eran, Felt, Adrienne Porter, McMillion, Brendan, Tabriz, Parisa.  2019.  Does Certificate Transparency Break the Web? Measuring Adoption and Error Rate 2019 IEEE Symposium on Security and Privacy (SP). :211—226.
Certificate Transparency (CT) is an emerging system for enabling the rapid discovery of malicious or misissued certificates. Initially standardized in 2013, CT is now finally beginning to see widespread support. Although CT provides desirable security benefits, web browsers cannot begin requiring all websites to support CT at once, due to the risk of breaking large numbers of websites. We discuss challenges for deployment, analyze the adoption of CT on the web, and measure the error rates experienced by users of the Google Chrome web browser. We find that CT has so far been widely adopted with minimal breakage and warnings. Security researchers often struggle with the tradeoff between security and user frustration: rolling out new security requirements often causes breakage. We view CT as a case study for deploying ecosystem-wide change while trying to minimize end user impact. We discuss the design properties of CT that made its success possible, as well as draw lessons from its risks and pitfalls that could be avoided in future large-scale security deployments.
Wang, Congli, Lin, Jingqiang, Li, Bingyu, Li, Qi, Wang, Qiongxiao, Zhang, Xiaokun.  2019.  Analyzing the Browser Security Warnings on HTTPS Errors. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1—6.
HTTPS provides authentication, data confidentiality, and integrity for secure web applications in the Internet. In order to establish secure connections with the target website but not a man-in-the-middle or impersonation attacker, a browser shows security warnings to users, when different HTTPS errors happen (e.g., it fails to build a valid certificate chain, or the certificate subject does not match the domain visited). Each browser implements its own design of warnings on HTTPS errors, to balance security and usability. This paper presents a list of common HTTPS errors, and we investigate the browser behaviors on each error. Our study discloses browser defects on handling HTTPS errors in terms of cryptographic algorithm, certificate verification, name validation, HPKP, and HSTS.
Oest, Adam, Safaei, Yeganeh, Doupé, Adam, Ahn, Gail-Joon, Wardman, Brad, Tyers, Kevin.  2019.  PhishFarm: A Scalable Framework for Measuring the Effectiveness of Evasion Techniques against Browser Phishing Blacklists. 2019 IEEE Symposium on Security and Privacy (SP). :1344—1361.

Phishing attacks have reached record volumes in recent years. Simultaneously, modern phishing websites are growing in sophistication by employing diverse cloaking techniques to avoid detection by security infrastructure. In this paper, we present PhishFarm: a scalable framework for methodically testing the resilience of anti-phishing entities and browser blacklists to attackers' evasion efforts. We use PhishFarm to deploy 2,380 live phishing sites (on new, unique, and previously-unseen .com domains) each using one of six different HTTP request filters based on real phishing kits. We reported subsets of these sites to 10 distinct anti-phishing entities and measured both the occurrence and timeliness of native blacklisting in major web browsers to gauge the effectiveness of protection ultimately extended to victim users and organizations. Our experiments revealed shortcomings in current infrastructure, which allows some phishing sites to go unnoticed by the security community while remaining accessible to victims. We found that simple cloaking techniques representative of real-world attacks- including those based on geolocation, device type, or JavaScript- were effective in reducing the likelihood of blacklisting by over 55% on average. We also discovered that blacklisting did not function as intended in popular mobile browsers (Chrome, Safari, and Firefox), which left users of these browsers particularly vulnerable to phishing attacks. Following disclosure of our findings, anti-phishing entities are now better able to detect and mitigate several cloaking techniques (including those that target mobile users), and blacklisting has also become more consistent between desktop and mobile platforms- but work remains to be done by anti-phishing entities to ensure users are adequately protected. Our PhishFarm framework is designed for continuous monitoring of the ecosystem and can be extended to test future state-of-the-art evasion techniques used by malicious websites.

Szabo, Roland, Gontean, Aurel.  2019.  The Creation Process of a Secure and Private Mobile Web Browser with no Ads and no Popups. 2019 IEEE 25th International Symposium for Design and Technology in Electronic Packaging (SIITME). :232—235.
The aim of this work is to create a new style web browser. The other web browsers can have safety issues and have many ads and popups. The other web browsers can fill up cache with the logging of big history of visited web pages. This app is a light-weight web browser which is both secure and private with no ads and no popups, just the plain Internet shown in full screen. The app does not store all user data, so the navigation of webpages is done in incognito mode. The app was made to open any new HTML5 web page in a secure and private mode with big focus on loading speed of the web pages.
Go, Sharleen Joy Y., Guinto, Richard, Festin, Cedric Angelo M., Austria, Isabel, Ocampo, Roel, Tan, Wilson M..  2019.  An SDN/NFV-Enabled Architecture for Detecting Personally Identifiable Information Leaks on Network Traffic. 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN). :306—311.

The widespread adoption of social networking and cloud computing has transformed today's Internet to a trove of personal information. As a consequence, data breaches are expected to increase in gravity and occurrence. To counteract unintended data disclosure, a great deal of effort has been dedicated in devising methods for uncovering privacy leaks. Existing solutions, however, have not addressed the time- and data-intensive nature of leak detection. The shift from hardware-specific implementation to software-based solutions is the core idea behind the concept of Network Function Virtualization (NFV). On the other hand, the Software Defined Networking (SDN) paradigm is characterized by the decoupling of the forwarding and control planes. In this paper, an SDN/NFV-enabled architecture is proposed for improving the efficiency of leak detection systems. Employing a previously developed identification strategy, Personally Identifiable Information detector (PIID) and load balancer VNFs are packaged and deployed in OpenStack through an NFV MANO. Meanwhile, SDN controllers permit the load balancer to dynamically redistribute traffic among the PIID instances. In a physical testbed, tests are conducted to evaluate the proposed architecture. Experimental results indicate that the proportions of forwarding and parsing on total overhead is influenced by the traffic intensity. Furthermore, an NFV-enabled system with scalability features was found to outperform a non-virtualized implementation in terms of latency (85.1%), packet loss (98.3%) and throughput (8.41%).

2020-04-13
Lange, Thomas, Kettani, Houssain.  2019.  On Security Threats of Botnets to Cyber Systems. 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN). :176–183.
As the dynamics of cyber warfare continue to change, it is very important to be aware of the issues currently confronting cyberspace. One threat which continues to grow in the danger it poses to cyber security are botnets. Botnets can launch massive Distributed Denial of Service (DDoS) attacks against internet connected hosts anonymously, undertake intricate spam campaigns, launch mass financial fraud campaigns, and even manipulate public opinion via social media bots. The network topology and technology undergirding each botnet varies greatly, as do the motivations commonly behind such networks. Furthermore, as botnets have continued to evolve, many newer ones demonstrate increased levels of anonymity and sophistication, making it more difficult to effectively counter them. Increases in the production of vulnerable Internet of Things (IoT) devices has made it easier for malicious actors to quickly assemble sizable botnets. Because of this, the steps necessary to stop botnets also vary, and in some cases, it may be extremely difficult to effectively defeat a fully functional and sophisticated botnet. While in some cases, the infrastructure supporting the botnet can be targeted and remotely disabled, other cases require the physical assistance of law enforcement to shut down the botnet. In the latter case, it is often a significant challenge to cheaply end a botnet. On the other hand, there are many steps and mitigations that can be taken by end-users to prevent their own devices from becoming part of a botnet. Many of these solutions involve implementing basic cybersecurity practices like installing firewalls and changing default passwords. More sophisticated botnets may require similarly sophisticated intrusion detection systems, to detect and remove malicious infections. Much research has gone into such systems and in recent years many researchers have begun to implement machine learning techniques to defeat botnets. This paper is intended present a review on botnet evolution, trends and mitigations, and offer related examples and research to provide the reader with quick access to a broad understanding of the issues at hand.
Morishita, Shun, Hoizumi, Takuya, Ueno, Wataru, Tanabe, Rui, Gañán, Carlos, van Eeten, Michel J.G., Yoshioka, Katsunari, Matsumoto, Tsutomu.  2019.  Detect Me If You… Oh Wait. An Internet-Wide View of Self-Revealing Honeypots. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :134–143.
Open-source honeypots are a vital component in the protection of networks and the observation of trends in the threat landscape. Their open nature also enables adversaries to identify the characteristics of these honeypots in order to detect and avoid them. In this study, we investigate the prevalence of 14 open- source honeypots running more or less default configurations, making them easily detectable by attackers. We deploy 20 simple signatures and test them for false positives against servers for domains in the Alexa top 10,000, official FTP mirrors, mail servers in real operation, and real IoT devices running telnet. We find no matches, suggesting good accuracy. We then measure the Internet-wide prevalence of default open-source honeypots by matching the signatures with Censys scan data and our own scans. We discovered 19,208 honeypots across 637 Autonomous Systems that are trivially easy to identify. Concentrations are found in research networks, but also in enterprise, cloud and hosting networks. While some of these honeypots probably have no operational relevance, e.g., they are student projects, this explanation does not fit the wider population. One cluster of honeypots was confirmed to belong to a well-known security center and was in use for ongoing attack monitoring. Concentrations in an another cluster appear to be the result of government incentives. We contacted 11 honeypot operators and received response from 4 operators, suggesting the problem of lack of network hygiene. Finally, we find that some honeypots are actively abused by attackers for hosting malicious binaries. We notified the owners of the detected honeypots via their network operators and provided recommendations for customization to avoid simple signature-based detection. We also shared our results with the honeypot developers.
2020-04-10
Kikuchi, Masato, Okubo, Takao.  2019.  Power of Communication Behind Extreme Cybersecurity Incidents. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :315—319.

There are increasing threats for cyberspace. This paper tries to identify how extreme cybersecurity incidents occur based on the scenario of a targeted attack through emails. Knowledge on how extreme cybersecurity incidents occur helps in identifying the key points on how they can be prevented from occurring. The model based on system thinking approach to the understanding how communication influences entities and how tiny initiating events scale up into extreme events provides a condensed figure of the cyberspace and surrounding threats. By taking cyberspace layers and characteristics of cyberspace identified by this model into consideration, it predicts most suitable risk mitigations.

Wang, Cheng, Liu, Xin, Zhou, Xiaokang, Zhou, Rui, Lv, Dong, lv, Qingquan, Wang, Mingsong, Zhou, Qingguo.  2019.  FalconEye: A High-Performance Distributed Security Scanning System. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :282—288.
Web applications, as a conventional platform for sensitive data and important transactions, are of great significance to human society. But with its open source framework, the existing security vulnerabilities can easily be exploited by malicious users, especially when web developers fail to follow the secure practices. Here we present a distributed scanning system, FalconEye, with great precision and high performance, it will help prevent potential threats to Web applications. Besides, our system is also capable of covering basically all the web vulnerabilities registered in the Common Vulnerabilities and Exposures (CVE). The FalconEye system is consists of three modules, an input source module, a scanner module and a support platform module. The input module is used to improve the coverage of target server, and other modules make the system capable of generic vulnerabilities scanning. We then experimentally demonstrate this system in some of the most common vulnerabilities test environment. The results proved that the FalconEye system can be a strong contender among the various detection systems in existence today.
Newaz, AKM Iqtidar, Sikder, Amit Kumar, Rahman, Mohammad Ashiqur, Uluagac, A. Selcuk.  2019.  HealthGuard: A Machine Learning-Based Security Framework for Smart Healthcare Systems. 2019 Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS). :389—396.
The integration of Internet-of-Things and pervasive computing in medical devices have made the modern healthcare system “smart.” Today, the function of the healthcare system is not limited to treat the patients only. With the help of implantable medical devices and wearables, Smart Healthcare System (SHS) can continuously monitor different vital signs of a patient and automatically detect and prevent critical medical conditions. However, these increasing functionalities of SHS raise several security concerns and attackers can exploit the SHS in numerous ways: they can impede normal function of the SHS, inject false data to change vital signs, and tamper a medical device to change the outcome of a medical emergency. In this paper, we propose HealthGuard, a novel machine learning-based security framework to detect malicious activities in a SHS. HealthGuard observes the vital signs of different connected devices of a SHS and correlates the vitals to understand the changes in body functions of the patient to distinguish benign and malicious activities. HealthGuard utilizes four different machine learning-based detection techniques (Artificial Neural Network, Decision Tree, Random Forest, k-Nearest Neighbor) to detect malicious activities in a SHS. We trained HealthGuard with data collected for eight different smart medical devices for twelve benign events including seven normal user activities and five disease-affected events. Furthermore, we evaluated the performance of HealthGuard against three different malicious threats. Our extensive evaluation shows that HealthGuard is an effective security framework for SHS with an accuracy of 91 % and an F1 score of 90 %.
Yadollahi, Mohammad Mehdi, Shoeleh, Farzaneh, Serkani, Elham, Madani, Afsaneh, Gharaee, Hossein.  2019.  An Adaptive Machine Learning Based Approach for Phishing Detection Using Hybrid Features. 2019 5th International Conference on Web Research (ICWR). :281—286.

Nowadays, phishing is one of the most usual web threats with regards to the significant growth of the World Wide Web in volume over time. Phishing attackers always use new (zero-day) and sophisticated techniques to deceive online customers. Hence, it is necessary that the anti-phishing system be real-time and fast and also leverages from an intelligent phishing detection solution. Here, we develop a reliable detection system which can adaptively match the changing environment and phishing websites. Our method is an online and feature-rich machine learning technique to discriminate the phishing and legitimate websites. Since the proposed approach extracts different types of discriminative features from URLs and webpages source code, it is an entirely client-side solution and does not require any service from the third-party. The experimental results highlight the robustness and competitiveness of our anti-phishing system to distinguish the phishing and legitimate websites.

Baral, Gitanjali, Arachchilage, Nalin Asanka Gamagedara.  2019.  Building Confidence not to be Phished Through a Gamified Approach: Conceptualising User's Self-Efficacy in Phishing Threat Avoidance Behaviour. 2019 Cybersecurity and Cyberforensics Conference (CCC). :102—110.

Phishing attacks are prevalent and humans are central to this online identity theft attack, which aims to steal victims' sensitive and personal information such as username, password, and online banking details. There are many antiphishing tools developed to thwart against phishing attacks. Since humans are the weakest link in phishing, it is important to educate them to detect and avoid phishing attacks. One can argue self-efficacy is one of the most important determinants of individual's motivation in phishing threat avoidance behaviour, which has co-relation with knowledge. The proposed research endeavours on the user's self-efficacy in order to enhance the individual's phishing threat avoidance behaviour through their motivation. Using social cognitive theory, we explored that various knowledge attributes such as observational (vicarious) knowledge, heuristic knowledge and structural knowledge contributes immensely towards the individual's self-efficacy to enhance phishing threat prevention behaviour. A theoretical framework is then developed depicting the mechanism that links knowledge attributes, self-efficacy, threat avoidance motivation that leads to users' threat avoidance behaviour. Finally, a gaming prototype is designed incorporating the knowledge elements identified in this research that aimed to enhance individual's self-efficacy in phishing threat avoidance behaviour.