Visible to the public Biblio

Found 944 results

Filters: Keyword is Internet  [Clear All Filters]
2020-06-29
Kaljic, Enio, Maric, Almir, Njemcevic, Pamela.  2019.  DoS attack mitigation in SDN networks using a deeply programmable packet-switching node based on a hybrid FPGA/CPU data plane architecture. 2019 XXVII International Conference on Information, Communication and Automation Technologies (ICAT). :1–6.
The application of the concept of software-defined networks (SDN) has, on the one hand, led to the simplification and reduction of switches price, and on the other hand, has created a significant number of problems related to the security of the SDN network. In several studies was noted that these problems are related to the lack of flexibility and programmability of the data plane, which is likely first to suffer potential denial-of-service (DoS) attacks. One possible way to overcome this problem is to increase the flexibility of the data plane by increasing the depth of programmability of the packet-switching nodes below the level of flow table management. Therefore, this paper investigates the opportunity of using the architecture of deeply programmable packet-switching nodes (DPPSN) in the implementation of a firewall. Then, an architectural model of the firewall based on a hybrid FPGA/CPU data plane architecture has been proposed and implemented. Realized firewall supports three models of DoS attacks mitigation: DoS traffic filtering on the output interface, DoS traffic filtering on the input interface, and DoS attack redirection to the honeypot. Experimental evaluation of the implemented firewall has shown that DoS traffic filtering at the input interface is the best strategy for DoS attack mitigation, which justified the application of the concept of deep network programmability.
Rahman, Md. Mahmudur, Roy, Shanto, Yousuf, Mohammad Abu.  2019.  DDoS Mitigation and Intrusion Prevention in Content Delivery Networks using Distributed Virtual Honeypots. 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT). :1–6.

Content Delivery Networks(CDN) is a standout amongst the most encouraging innovations that upgrade performance for its clients' websites by diverting web demands from browsers to topographically dispersed CDN surrogate nodes. However, due to the variable nature of CDN, it suffers from various security and resource allocation issues. The most common attack which is used to bring down a whole network as well as CDN without even finding a loophole in the security is DDoS. In this proposal, we proposed a distributed virtual honeypot model for diminishing DDoS attacks and prevent intrusion in securing CDN. Honeypots are specially utilized to imitate the primary server with the goal that the attack is alleviated to the fake rather than the main server. Our proposed layer based model utilizes honeypot to be more effective reducing the cost of the system as well as maintaining the smooth delivery in geographically dispersed servers without performance degradation.

Ahalawat, Anchal, Dash, Shashank Sekhar, Panda, Abinas, Babu, Korra Sathya.  2019.  Entropy Based DDoS Detection and Mitigation in OpenFlow Enabled SDN. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–5.
Distributed Denial of Service(DDoS) attacks have become most important network security threat as the number of devices are connected to internet increases exponentially and reaching an attack volume approximately very high compared to other attacks. To make the network safe and flexible a new networking infrastructure such as Software Defined Networking (SDN) has come into effect, which relies on centralized controller and decoupling of control and data plane. However due to it's centralized controller it is prone to DDoS attacks, as it makes the decision of forwarding of packets based on rules installed in switch by OpenFlow protocol. Out of all different DDoS attacks, UDP (User Datagram Protocol) flooding constitute the most in recent years. In this paper, we have proposed an entropy based DDoS detection and rate limiting based mitigation for efficient service delivery. We have evaluated using Mininet as emulator and Ryu as controller by taking switch as OpenVswitch and obtained better result in terms of bandwidth utilization and hit ratio which consume network resources to make denial of service.
Blazek, Petr, Gerlich, Tomas, Martinasek, Zdenek.  2019.  Scalable DDoS Mitigation System. 2019 42nd International Conference on Telecommunications and Signal Processing (TSP). :617–620.
Distributed Denial of Service attacks (DDoS) are used by attackers for their effectiveness. This type of attack is one of the most devastating attacks in the Internet. Every year, the intensity of DDoS attacks increases and attackers use sophisticated multi-target DDoS attacks. In this paper, a modular system that allows to increase the filtering capacity linearly and allows to protect against the combination of DDoS attacks is designed and implemented. The main motivation for development of the modular filtering system was to find a cheap solution for filtering DDoS attacks with possibility to increase filtering capacity. The proposed system is based on open-source detection and filtration tools.
Daneshgadeh, Salva, Ahmed, Tarem, Kemmerich, Thomas, Baykal, Nazife.  2019.  Detection of DDoS Attacks and Flash Events Using Shannon Entropy, KOAD and Mahalanobis Distance. 2019 22nd Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN). :222–229.
The growing number of internet based services and applications along with increasing adoption rate of connected wired and wireless devices presents opportunities as well as technical challenges and threads. Distributed Denial of Service (DDoS) attacks have huge devastating effects on internet enabled services. It can be implemented diversely with a variety of tools and codes. Therefore, it is almost impossible to define a single solution to prevent DDoS attacks. The available solutions try to protect internet services from DDoS attacks, but there is no accepted best-practice yet to this security breach. On the other hand, distinguishing DDoS attacks from analogous Flash Events (FEs) wherein huge number of legitimate users try to access a specific internet based services and applications is a tough challenge. Both DDoS attacks and FEs result in unavailability of service, but they should be treated with different countermeasures. Therefore, it is worthwhile to investigate novel methods which can detect well disguising DDoS attacks from similar FE traffic. This paper will contribute to this topic by proposing a hybrid DDoS and FE detection scheme; taking 3 isolated approaches including Kernel Online Anomaly Detection (KOAD), Shannon Entropy and Mahalanobis Distance. In this study, Shannon entropy is utilized with an online machine learning technique to detect abnormal traffic including DDoS attacks and FE traffic. Subsequently, the Mahalanobis distance metric is employed to differentiate DDoS and FE traffic. the purposed method is validated using simulated DDoS attacks, real normal and FE traffic. The results revealed that the Mahalanobis distance metric works well in combination with machine learning approach to detect and discriminate DDoS and FE traffic in terms of false alarms and detection rate.
Tran, Thang M., Nguyen, Khanh-Van.  2019.  Fast Detection and Mitigation to DDoS Web Attack Based on Access Frequency. 2019 IEEE-RIVF International Conference on Computing and Communication Technologies (RIVF). :1–6.

We have been investigating methods for establishing an effective, immediate defense mechanism against the DDoS attacks on Web applications via hacker botnets, in which this defense mechanism can be immediately active without preparation time, e.g. for training data, usually asked for in existing proposals. In this study, we propose a new mechanism, including new data structures and algorithms, that allow the detection and filtering of large amounts of attack packets (Web request) based on monitoring and capturing the suspect groups of source IPs that can be sending packets at similar patterns, i.e. with very high and similar frequencies. The proposed algorithm places great emphasis on reducing storage space and processing time so it is promising to be effective in real-time attack response.

Liang, Xiaoyu, Znati, Taieb.  2019.  An empirical study of intelligent approaches to DDoS detection in large scale networks. 2019 International Conference on Computing, Networking and Communications (ICNC). :821–827.
Distributed Denial of Services (DDoS) attacks continue to be one of the most challenging threats to the Internet. The intensity and frequency of these attacks are increasing at an alarming rate. Numerous schemes have been proposed to mitigate the impact of DDoS attacks. This paper presents a comprehensive empirical evaluation of Machine Learning (ML)based DDoS detection techniques, to gain better understanding of their performance in different types of environments. To this end, a framework is developed, focusing on different attack scenarios, to investigate the performance of a class of ML-based techniques. The evaluation uses different performance metrics, including the impact of the “Class Imbalance Problem” on ML-based DDoS detection. The results of the comparative analysis show that no one technique outperforms all others in all test cases. Furthermore, the results underscore the need for a method oriented feature selection model to enhance the capabilities of ML-based detection techniques. Finally, the results show that the class imbalance problem significantly impacts performance, underscoring the need to address this problem in order to enhance ML-based DDoS detection capabilities.
2020-06-26
Rezaei, Aref, Farzinvash, Leili, Farzamnia, Ali.  2019.  A Novel Steganography Algorithm using Edge Detection and MPC Algorithm. 2019 16th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC). :49—54.

With the rapid development of the Internet, preserving the security of confidential data has become a challenging issue. An effective method to this end is to apply steganography techniques. In this paper, we propose an efficient steganography algorithm which applies edge detection and MPC algorithm for data concealment in digital images. The proposed edge detection scheme partitions the given image, namely cover image, into blocks. Next, it identifies the edge blocks based on the variance of their corner pixels. Embedding the confidential data in sharp edges causes less distortion in comparison to the smooth areas. To diminish the imposed distortion by data embedding in edge blocks, we employ LSB and MPC algorithms. In the proposed scheme, the blocks are split into some groups firstly. Next, a full tree is constructed per group using the LSBs of its pixels. This tree is converted into another full tree in some rounds. The resultant tree is used to modify the considered LSBs. After the accomplishment of the data embedding process, the final image, which is called stego image, is derived. According to the experimental results, the proposed algorithm improves PSNR with at least 5.4 compared to the previous schemes.

2020-06-22
Arji, Dian Abadi, Rukmana, Fandhy Bayu, Sari, Riri Fitri.  2019.  A Design of Digital Signature Mechanism in NDN-IP Gateway. 2019 International Conference on Information and Communications Technology (ICOIACT). :255–260.
Named Data Networking (NDN) is a new network architecture that has been projected as the future of internet architecture. Unlike the traditional internet approach which currently relies on client-server communication models to communicate each other, NDN relies on data as an entity. Hence the users only need the content and applications based on data naming, as there is no IP addresses needed. NDN is different than TCP/IP technology as NDN signs the data with Digital Signature to secure each data authenticity. Regarding huge number of uses on IP-based network, and the minimum number of NDN-based network implementation, the NDN-IP gateway are needed to map and forward the data from IP-based network to NDN-based network, and vice versa. These gateways are called Custom-Router Gateway in this study. The Custom-Router Gateway requires a new mechanism in conducting Digital Signature so that authenticity the data can be verified when it passes through the NDN-IP Custom-Router Gateway. This study propose a method to process the Digital Signature for the packet flows from IP-based network through NDN-based network. Future studies are needed to determine the impact of Digital Signature processing on the performance in forwarding the data from IP-based to NDN-based network and vice versa.
2020-06-19
Chandra, Yogesh, Jana, Antoreep.  2019.  Improvement in Phishing Websites Detection Using Meta Classifiers. 2019 6th International Conference on Computing for Sustainable Global Development (INDIACom). :637—641.

In the era of the ever-growing number of smart devices, fraudulent practices through Phishing Websites have become an increasingly severe threat to modern computers and internet security. These websites are designed to steal the personal information from the user and spread over the internet without the knowledge of the user using the system. These websites give a false impression of genuinity to the user by mirroring the real trusted web pages which then leads to the loss of important credentials of the user. So, Detection of such fraudulent websites is an essence and the need of the hour. In this paper, various classifiers have been considered and were found that ensemble classifiers predict to utmost efficiency. The idea behind was whether a combined classifier model performs better than a single classifier model leading to a better efficiency and accuracy. In this paper, for experimentation, three Meta Classifiers, namely, AdaBoostM1, Stacking, and Bagging have been taken into consideration for performance comparison. It is found that Meta Classifier built by combining of simple classifier(s) outperform the simple classifier's performance.

Garrido, Pablo, Sanchez, Isabel, Ferlin, Simone, Aguero, Ramon, Alay, Ozgu.  2019.  Poster: rQUIC - integrating FEC with QUIC for robust wireless communications. 2019 IFIP Networking Conference (IFIP Networking). :1—2.

Quick UDP Internet Connections (QUIC) is an experimental transport protocol designed to primarily reduce connection establishment and transport latency, as well as to improve security standards with default end-to-end encryption in HTTPbased applications. QUIC is a multiplexed and secure transport protocol fostered by Google and its design emerged from the urgent need of innovation in the transport layer, mainly due to difficulties extending TCP and deploying new protocols. While still under standardisation, a non-negligble fraction of the Internet's traffic, more than 7% of a European Tier1-ISP, is already running over QUIC and it constitutes more than 30% of Google's egress traffic [1].

Michel, François, De Coninck, Quentin, Bonaventure, Olivier.  2019.  QUIC-FEC: Bringing the benefits of Forward Erasure Correction to QUIC. 2019 IFIP Networking Conference (IFIP Networking). :1—9.

Originally implemented by Google, QUIC gathers a growing interest by providing, on top of UDP, the same service as the classical TCP/TLS/HTTP/2 stack. The IETF will finalise the QUIC specification in 2019. A key feature of QUIC is that almost all its packets, including most of its headers, are fully encrypted. This prevents eavesdropping and interferences caused by middleboxes. Thanks to this feature and its clean design, QUIC is easier to extend than TCP. In this paper, we revisit the reliable transmission mechanisms that are included in QUIC. More specifically, we design, implement and evaluate Forward Erasure Correction (FEC) extensions to QUIC. These extensions are mainly intended for high-delays and lossy communications such as In-Flight Communications. Our design includes a generic FEC frame and our implementation supports the XOR, Reed-Solomon and Convolutional RLC error-correcting codes. We also conservatively avoid hindering the loss-based congestion signal by distinguishing the packets that have been received from the packets that have been recovered by the FEC. We evaluate its performance by applying an experimental design covering a wide range of delay and packet loss conditions with reproducible experiments. These confirm that our modular design allows the protocol to adapt to the network conditions. For long data transfers or when the loss rate and delay are small, the FEC overhead negatively impacts the download completion time. However, with high packet loss rates and long delays or smaller files, FEC allows drastically reducing the download completion time by avoiding costly retransmission timeouts. These results show that there is a need to use FEC adaptively to the network conditions.

2020-06-15
Kipchuk, Feodosiy, Sokolov, Volodymyr, Buriachok, Volodymyr, Kuzmenko, Lidia.  2019.  Investigation of Availability of Wireless Access Points based on Embedded Systems. 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S T). :1–5.
The paper presents the results of load testing of embedded hardware platforms for Internet of Things solutions. Analyzed the available hardware. The operating systems from different manufacturers were consolidated into a single classification, and for the two most popular, load testing was performed by an external and internal wireless network adapter. Developed its own software solution based on the Python programming language. The number of wireless subscribers ranged from 7 to 14. Experimental results will be useful in deploying wireless infrastructure for small commercial and scientific wireless networks.
Gressl, Lukas, Steger, Christian, Neffe, Ulrich.  2019.  Consideration of Security Attacks in the Design Space Exploration of Embedded Systems. 2019 22nd Euromicro Conference on Digital System Design (DSD). :530–537.
Designing secure systems is a complex task, particularly for designers who are no security experts. Cyber security plays a key role in embedded systems, especially for the domain of the Internet of Things (IoT). IoT systems of this kind are becoming increasingly important in daily life as they simplify various tasks. They are usually small, either embedded into bigger systems or battery driven, and perform monitoring or one shot tasks. Thus, they are subject to manifold constraints in terms of performance, power consumption, chip area, etc. As they are continuously connected to the internet and utilize our private data to perform their tasks, they are interesting for potential attackers. Cyber security thus plays an important role for the design of an IoT system. As the usage of security measures usually increases both computation time, as well as power consumption, a conflict between these constraints must be solved. For the designers of such systems, balancing these constraints constitutes a highly complex task. In this paper we propose a novel approach for considering possible security attacks on embedded systems, simplifying the consideration of security requirements immediately at the start of the design process. We introduce a security aware design space exploration framework which based on an architectural, behavioral and security attack description, finds the optimal design for IoT systems. We also demonstrate the feasibility and the benefits of our framework based on a door access system use case.
Chen, JiaYou, Guo, Hong, Hu, Wei.  2019.  Research on Improving Network Security of Embedded System. 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :136–138.
With the continuous development of information technology, our country has achieved great progress and development in Electronic Science and technology. Nowadays mobile embedded systems are gradually coming into people's vision. Mobile embedded system is a brand-new computer technology in the current computer technology. Now it has been widely used in enterprises. Mobile embedded system extends its functions mainly by combining the access capability of the Internet. Nowadays, embedded system network is widely welcomed by people. But for the embedded system network, there are also a variety of network attacks. Therefore, in the research process of this paper, we mainly start with the way of embedded network security and network attack, and then carry out the countermeasures to improve the network security of embedded system, which is to provide a good reference for improving the security and stability of embedded system.
2020-06-08
Sun, Wenhua, Wang, Xiaojuan, Jin, Lei.  2019.  An Efficient Hash-Tree-Based Algorithm in Mining Sequential Patterns with Topology Constraint. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :2782–2789.
Warnings happen a lot in real transmission networks. These warnings can affect people's lives. It is significant to analyze the alarm association rules in the network. Many algorithms can help solve this problem but not considering the actual physical significance. Therefore, in this study, we mine the association rules in warning weblogs based on a sequential mining algorithm (GSP) with topology structure. We define a topology constraint from network physical connection data. Under the topology constraint, network nodes have topology relation if they are directly connected or have a common adjacency node. In addition, due to the large amount of data, we implement the hash-tree search method to improve the mining efficiency. The theoretical solution is feasible and the simulation results verify our method. In simulation, the topology constraint improves the accuracy for 86%-96% and decreases the run time greatly at the same time. The hash-tree based mining results show that hash tree efficiency improvements are in 3-30% while the number of patterns remains unchanged. In conclusion, using our method can mine association rules efficiently and accurately in warning weblogs.
2020-06-01
Khorev, P.B..  2018.  Authenticate Users with Their Work on the Internet. 2018 IV International Conference on Information Technologies in Engineering Education (Inforino). :1–4.
Examines the shortcomings of existing methods of user authentication when accessing remote information systems. Proposed method of multi-factor authentication based on validation of knowledge of a secret password and verify that the habits and preferences of Internet user's interests, defined by registration in the system. Identifies the language and tools implementation of the proposed authentication algorithm.
Mohd Ariffin, Noor Afiza, Mohd Sani, Noor Fazlida.  2018.  A Multi-factor Biometric Authentication Scheme Using Attack Recognition and Key Generator Technique for Security Vulnerabilities to Withstand Attacks. 2018 IEEE Conference on Application, Information and Network Security (AINS). :43–48.
Security plays an important role in many authentication applications. Modern era information sharing is boundless and becoming much easier to access with the introduction of the Internet and the World Wide Web. Although this can be considered as a good point, issues such as privacy and data integrity arise due to the lack of control and authority. For this reason, the concept of data security was introduced. Data security can be categorized into two which are secrecy and authentication. In particular, this research was focused on the authentication of data security. There have been substantial research which discusses on multi-factor authentication scheme but most of those research do not entirely protect data against all types of attacks. Most current research only focuses on improving the security part of authentication while neglecting other important parts such as the accuracy and efficiency of the system. Current multifactor authentication schemes were simply not designed to have security, accuracy, and efficiency as their main focus. To overcome the above issue, this research will propose a new multi-factor authentication scheme which is capable to withstand external attacks which are known security vulnerabilities and attacks which are based on user behavior. On the other hand, the proposed scheme still needs to maintain an optimum level of accuracy and efficiency. From the result of the experiments, the proposed scheme was proven to be able to withstand the attacks. This is due to the implementation of the attack recognition and key generator technique together with the use of multi-factor in the proposed scheme.
Dhal, Subhasish, Bhuwan, Vaibhav.  2018.  Cryptanalysis and improvement of a cloud based login and authentication protocol. 2018 4th International Conference on Recent Advances in Information Technology (RAIT). :1–6.
Outsourcing services to cloud server (CS) becomes popular in these years. However, the outsourced services often involve with sensitive activity and CS naturally becomes a target of varieties of attacks. Even worse, CS itself can misuse the outsourced services for illegal profit. Traditional online banking system also can make use of a cloud framework to provide economical and high-speed online services to the consumers, which makes the financial dealing easy and convenient. Most of the banking organizations provide services through passbook, ATM, mobile banking, electronic banking (e-banking) etc. Among these, the e-banking and mobile banking are more convenient and becomes essential. Therefore, it is critical to provide an efficient, reliable and more importantly, secure e-banking services to the consumers. The cloud environment is suitable paradigm to a new, small and medium scale banking organization as it eliminates the requirement for them to start with small resources and increase gradually as the service demand rises. However, security is one of the main concerns since it deals with many sensitive data of the valuable customers. In addition to this, the access of various data needs to be restricted to prevent any unauthorized transaction. Nagaraju et al. presented a framework to achieve reliability and security in public cloud based online banking using multi-factor authentication concept. Unfortunately, the login and authentication protocol of this framework is prone to impersonation attack. In this paper, we have revised the framework to avoid this attack.
Ye, Yu, Guo, Jun, Xu, Xunjian, Li, Qinpu, Liu, Hong, Di, Yuelun.  2019.  High-risk Problem of Penetration Testing of Power Grid Rainstorm Disaster Artificial Intelligence Prediction System and Its Countermeasures. 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2). :2675–2680.
System penetration testing is an important measure of discovering information system security issues. This paper summarizes and analyzes the high-risk problems found in the penetration testing of the artificial storm prediction system for power grid storm disasters from four aspects: application security, middleware security, host security and network security. In particular, in order to overcome the blindness of PGRDAIPS current SQL injection penetration test, this paper proposes a SQL blind bug based on improved second-order fragmentation reorganization. By modeling the SQL injection attack behavior and comparing the SQL injection vulnerability test in PGRDAIPS, this method can effectively reduce the blindness of SQL injection penetration test and improve its accuracy. With the prevalence of ubiquitous power internet of things, the electric power information system security defense work has to be taken seriously. This paper can not only guide the design, development and maintenance of disaster prediction information systems, but also provide security for the Energy Internet disaster safety and power meteorological service technology support.
Halba, Khalid, Griffor, Edward, Kamongi, Patrick, Roth, Thomas.  2019.  Using Statistical Methods and Co-Simulation to Evaluate ADS-Equipped Vehicle Trustworthiness. 2019 Electric Vehicles International Conference (EV). :1–5.

With the increasing interest in studying Automated Driving System (ADS)-equipped vehicles through simulation, there is a growing need for comprehensive and agile middleware to provide novel Virtual Analysis (VA) functions of ADS-equipped vehicles towards enabling a reliable representation for pre-deployment test. The National Institute of Standards and Technology (NIST) Universal Cyber-physical systems Environment for Federation (UCEF) is such a VA environment. It provides Application Programming Interfaces (APIs) capable of ensuring synchronized interactions across multiple simulation platforms such as LabVIEW, OMNeT++, Ricardo IGNITE, and Internet of Things (IoT) platforms. UCEF can aid engineers and researchers in understanding the impact of different constraints associated with complex cyber-physical systems (CPS). In this work UCEF is used to produce a simulated Operational Domain Design (ODD) for ADS-equipped vehicles where control (drive cycle/speed pattern), sensing (obstacle detection, traffic signs and lights), and threats (unusual signals, hacked sources) are represented as UCEF federates to simulate a drive cycle and to feed it to vehicle dynamics simulators (e.g. OpenModelica or Ricardo IGNITE) through the Functional Mock-up Interface (FMI). In this way we can subject the vehicle to a wide range of scenarios, collect data on the resulting interactions, and analyze those interactions using metrics to understand trustworthiness impact. Trustworthiness is defined here as in the NIST Framework for Cyber-Physical Systems, and is comprised of system reliability, resiliency, safety, security, and privacy. The goal of this work is to provide an example of an experimental design strategy using Fractional Factorial Design for statistically assessing the most important safety metrics in ADS-equipped vehicles.

Ansari, Abdul Malik, Hussain, Muzzammil.  2018.  Middleware Based Node Authentication Framework for IoT Networks. 2018 International Conference on Inventive Research in Computing Applications (ICIRCA). :31–35.
Security and protection are among the most squeezing worries that have developed with the Internet. As systems extended and turned out to be more open, security hones moved to guarantee insurance of the consistently developing Internet, its clients, and information. Today, the Internet of Things (IoT) is rising as another sort of system that associates everything to everybody, all over. Subsequently, the edge of resistance for security and protection moves toward becoming smaller on the grounds that a break may prompt vast scale irreversible harm. One element that eases the security concerns is validation. While diverse confirmation plans are utilized as a part of vertical system storehouses, a typical personality and validation plot is expected to address the heterogeneity in IoT and to coordinate the distinctive conventions exhibit in IoT. In this paper, a light weight secure framework is proposed. The proposed framework is analyzed for performance with security mechanism and found to be better over critical parameters.
2020-05-29
Tseng, Yi-Fan, Fan, Chun-I, Wu, Chin-Yu.  2019.  FGAC-NDN: Fine-Grained Access Control for Named Data Networks. IEEE Transactions on Network and Service Management. 16:143—152.

Named data network (NDN) is one of the most promising information-centric networking architectures, where the core concept is to focus on the named data (or contents) themselves. Users in NDN can easily send a request packet to get the desired content regardless of its address. The routers in NDN have cache functionality to make the users instantly retrieve the desired file. Thus, the user can immediately get the desired file from the nearby nodes instead of the remote host. Nevertheless, NDN is a novel proposal and there are still some open issues to be resolved. In view of previous research, it is a challenge to achieve access control on a specific user and support potential receivers simultaneously. In order to solve it, we present a fine-grained access control mechanism tailored for NDN, supporting data confidentiality, potential receivers, and mobility. Compared to previous works, this is the first to support fine-grained access control and potential receivers. Furthermore, the proposed scheme achieves provable security under the DBDH assumption.

HOU, RUI, Han, Min, Chen, Jing, Hu, Wenbin, Tan, Xiaobin, Luo, Jiangtao, Ma, Maode.  2019.  Theil-Based Countermeasure against Interest Flooding Attacks for Named Data Networks. IEEE Network. 33:116—121.

NDN has been widely regarded as a promising representation and implementation of information- centric networking (ICN) and serves as a potential candidate for the future Internet architecture. However, the security of NDN is threatened by a significant safety hazard known as an IFA, which is an evolution of DoS and distributed DoS attacks on IP-based networks. The IFA attackers can create numerous malicious interest packets into a named data network to quickly exhaust the bandwidth of communication channels and cache capacity of NDN routers, thereby seriously affecting the routers' ability to receive and forward packets for normal users. Accurate detection of the IFAs is the most critical issue in the design of a countermeasure. To the best of our knowledge, the existing IFA countermeasures still have limitations in terms of detection accuracy, especially for rapidly volatile attacks. This article proposes a TC to detect the distributions of normal and malicious interest packets in the NDN routers to further identify the IFA. The trace back method is used to prevent further attempts. The simulation results show the efficiency of the TC for mitigating the IFAs and its advantages over other typical IFA countermeasures.

Yao, Lin, Jiang, Binyao, Deng, Jing, Obaidat, Mohammad S..  2019.  LSTM-Based Detection for Timing Attacks in Named Data Network. 2019 IEEE Global Communications Conference (GLOBECOM). :1—6.

Named Data Network (NDN) is an alternative to host-centric networking exemplified by today's Internet. One key feature of NDN is in-network caching that reduces access delay and query overhead by caching popular contents at the source as well as at a few other nodes. Unfortunately, in-network caching suffers various privacy risks by different attacks, one of which is termed timing attack. This is an attack to infer whether a consumer has recently requested certain contents based on the time difference between the delivery time of those contents that are currently cached and those that are not cached. In order to prevent the privacy leakage and resist such kind of attacks, we propose a detection scheme by adopting Long Short-term Memory (LSTM) model. Based on the four input features of LSTM, cache hit ratio, average request interval, request frequency, and types of requested contents, we timely capture more important eigenvalues by dividing a constant time window size into a few small slices in order to detect timing attacks accurately. We have performed extensive simulations to compare our scheme with several other state-of-the-art schemes in classification accuracy, detection ratio, false alarm ratio, and F-measure. It has been shown that our scheme possesses a better performance in all cases studied.