Biblio
Cyberspace is the fifth largest activity space after land, sea, air and space. Safeguarding Cyberspace Security is a major issue related to national security, national sovereignty and the legitimate rights and interests of the people. With the rapid development of artificial intelligence technology and its application in various fields, cyberspace security is facing new challenges. How to help the network security personnel grasp the security trend at any time, help the network security monitoring personnel respond to the alarm information quickly, and facilitate the tracking and processing of the monitoring personnel. This paper introduces a method of using situational awareness micro application actual combat attack and defense robot to quickly feed back the network attack information to the monitoring personnel, timely report the attack information to the information reporting platform and automatically block the malicious IP.
With the advent of networking technologies and increasing network attacks, Intrusion Detection systems are apparently needed to stop attacks and malicious activities. Various frameworks and techniques have been developed to solve the problem of intrusion detection, still there is need for new frameworks as per the challenging scenario of enormous scale in data size and nature of attacks. Current IDS systems pose challenges on the throughput to work with high speed networks. In this paper we address the issue of high computational overhead of anomaly based IDS and propose the solution using discretization as a data preprocessing step which can drastically reduce the computation overhead. We propose method to provide near real time detection of attacks using only basic flow level features that can easily be extracted from network packets.
Deep neural networks are widely used in many walks of life. Techniques such as transfer learning enable neural networks pre-trained on certain tasks to be retrained for a new duty, often with much less data. Users have access to both pre-trained model parameters and model definitions along with testing data but have either limited access to training data or just a subset of it. This is risky for system-critical applications, where adversarial information can be maliciously included during the training phase to attack the system. Determining the existence and level of attack in a model is challenging. In this paper, we present evidence on how adversarially attacking training data increases the boundary of model parameters using as an example of a CNN model and the MNIST data set as a test. This expansion is due to new characteristics of the poisonous data that are added to the training data. Approaching the problem from the feature space learned by the network provides a relation between them and the possible parameters taken by the model on the training phase. An algorithm is proposed to determine if a given network was attacked in the training by comparing the boundaries of parameters distribution on intermediate layers of the model estimated by using the Maximum Entropy Principle and the Variational inference approach.
Network attack is a significant security issue for modern society. From small mobile devices to large cloud platforms, almost all computing products, used in our daily life, are networked and potentially under the threat of network intrusion. With the fast-growing network users, network intrusions become more and more frequent, volatile and advanced. Being able to capture intrusions in time for such a large scale network is critical and very challenging. To this end, the machine learning (or AI) based network intrusion detection (NID), due to its intelligent capability, has drawn increasing attention in recent years. Compared to the traditional signature-based approaches, the AI-based solutions are more capable of detecting variants of advanced network attacks. However, the high detection rate achieved by the existing designs is usually accompanied by a high rate of false alarms, which may significantly discount the overall effectiveness of the intrusion detection system. In this paper, we consider the existence of spatial and temporal features in the network traffic data and propose a hierarchical CNN+RNN neural network, LuNet. In LuNet, the convolutional neural network (CNN) and the recurrent neural network (RNN) learn input traffic data in sync with a gradually increasing granularity such that both spatial and temporal features of the data can be effectively extracted. Our experiments on two network traffic datasets show that compared to the state-of-the-art network intrusion detection techniques, LuNet not only offers a high level of detection capability but also has a much low rate of false positive-alarm.
Advent of Cyber has converted the entire World into a Global village. But, due to vurneabilites in SCADA architecture [1] national assests are more prone to cyber attacks.. Cyber invasions have a catastrophic effect in the minds of the civilian population, in terms of states security system. A robust cyber security is need of the hour to protect the critical information infastructrue & critical infrastructure of a country. Here, in this paper we scrutinize cyber terrorism, vurneabilites in SCADA network systems [1], [2] and concept of cyber resilience to combat cyber attacks.
The article issue is the enterprise information protection within the internet of things concept. The aim of research is to develop arrangements set to ensure secure enterprise IPv6 network operating. The object of research is the enterprise IPv6 network. The subject of research is modern switching equipment as a tool to ensure network protection. The research task is to prioritize functioning of switches in production and corporation enterprise networks, to develop a network host protection algorithm, to test the developed algorithm on the Cisco Packet Tracer 7 software emulator. The result of research is the proposed approach to IPv6-network security based on analysis of modern switches functionality, developed and tested enterprise network host protection algorithm under IPv6-protocol with an automated network SLAAC-configuration control, a set of arrangements for resisting default enterprise gateway attacks, using ACL, VLAN, SEND, RA Guard security technology, which allows creating sufficiently high level of networks security.
Security issues in computer networks have focused on attacks on end systems and the control plane. An entirely new class of emerging network attacks aims at the data plane of the network. Data plane forwarding in network routers has traditionally been implemented with custom-logic hardware, but recent router designs increasingly use software-programmable network processors for packet forwarding. These general-purpose processing devices exhibit software vulnerabilities and are susceptible to attacks. We demonstrate-to our knowledge the first-practical attack that exploits a vulnerability in packet processing software to launch a devastating denial-of-service attack from within the network infrastructure. This attack uses only a single attack packet to consume the full link bandwidth of the router's outgoing link. We also present a hardware-based defense mechanism that can detect situations where malicious packets try to change the operation of the network processor. Using a hardware monitor, our NetFPGA-based prototype system checks every instruction executed by the network processor and can detect deviations from correct processing within four clock cycles. A recovery system can restore the network processor to a safe state within six cycles. This high-speed detection and recovery system can ensure that network processors can be protected effectively and efficiently from this new class of attacks.