Visible to the public Biblio

Filters: Keyword is network attack  [Clear All Filters]
2022-12-09
Yan, Lei, Liu, Xinrui, Du, Chunhui, Pei, Junjie.  2022.  Research on Network Attack Information Acquisition and Monitoring Method based on Artificial Intelligence. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:2129—2132.

Cyberspace is the fifth largest activity space after land, sea, air and space. Safeguarding Cyberspace Security is a major issue related to national security, national sovereignty and the legitimate rights and interests of the people. With the rapid development of artificial intelligence technology and its application in various fields, cyberspace security is facing new challenges. How to help the network security personnel grasp the security trend at any time, help the network security monitoring personnel respond to the alarm information quickly, and facilitate the tracking and processing of the monitoring personnel. This paper introduces a method of using situational awareness micro application actual combat attack and defense robot to quickly feed back the network attack information to the monitoring personnel, timely report the attack information to the information reporting platform and automatically block the malicious IP.

2021-02-23
Ratti, R., Singh, S. R., Nandi, S..  2020.  Towards implementing fast and scalable Network Intrusion Detection System using Entropy based Discretization Technique. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—7.

With the advent of networking technologies and increasing network attacks, Intrusion Detection systems are apparently needed to stop attacks and malicious activities. Various frameworks and techniques have been developed to solve the problem of intrusion detection, still there is need for new frameworks as per the challenging scenario of enormous scale in data size and nature of attacks. Current IDS systems pose challenges on the throughput to work with high speed networks. In this paper we address the issue of high computational overhead of anomaly based IDS and propose the solution using discretization as a data preprocessing step which can drastically reduce the computation overhead. We propose method to provide near real time detection of attacks using only basic flow level features that can easily be extracted from network packets.

2021-02-03
He, S., Lei, D., Shuang, W., Liu, C., Gu, Z..  2020.  Network Security Analysis of Industrial Control System Based on Attack-Defense Tree. 2020 IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS). :651—655.
In order to cope with the network attack of industrial control system, this paper proposes a quantifiable attack-defense tree model. In order to reduce the influence of subjective factors on weight calculation and the probability of attack events, the Fuzzy Analytic Hierarchy Process and the Attack-Defense Tree model are combined. First, the model provides a variety of security attributes for attack and defense leaf nodes. Secondly, combining the characteristics of leaf nodes, a fuzzy consistency matrix is constructed to calculate the security attribute weight of leaf nodes, and the probability of attack and defense leaf nodes. Then, the influence of defense node on attack behavior is analyzed. Finally, the network risk assessment of typical airport oil supply automatic control system has been undertaken as a case study using this attack-defense tree model. The result shows that this model can truly reflect the impact of defense measures on the attack behavior, and provide a reference for the network security scheme.
2020-11-04
Chacon, H., Silva, S., Rad, P..  2019.  Deep Learning Poison Data Attack Detection. 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI). :971—978.

Deep neural networks are widely used in many walks of life. Techniques such as transfer learning enable neural networks pre-trained on certain tasks to be retrained for a new duty, often with much less data. Users have access to both pre-trained model parameters and model definitions along with testing data but have either limited access to training data or just a subset of it. This is risky for system-critical applications, where adversarial information can be maliciously included during the training phase to attack the system. Determining the existence and level of attack in a model is challenging. In this paper, we present evidence on how adversarially attacking training data increases the boundary of model parameters using as an example of a CNN model and the MNIST data set as a test. This expansion is due to new characteristics of the poisonous data that are added to the training data. Approaching the problem from the feature space learned by the network provides a relation between them and the possible parameters taken by the model on the training phase. An algorithm is proposed to determine if a given network was attacked in the training by comparing the boundaries of parameters distribution on intermediate layers of the model estimated by using the Maximum Entropy Principle and the Variational inference approach.

2020-09-14
Liang, Xiao, Ma, Lixin, An, Ningyu, Jiang, Dongxiao, Li, Chenggang, Chen, Xiaona, Zhao, Lijiao.  2019.  Ontology Based Security Risk Model for Power Terminal Equipment. 2019 12th International Symposium on Computational Intelligence and Design (ISCID). 2:212–216.
IoT based technology are drastically accelerating the informationization development of the power grid system of China that consists of a huge number of power terminal devices interconnected by the network of electric power IoT. However, the networked power terminal equipment oriented cyberspace security has continually become a challenging problem as network attack is continually varying and evolving. In this paper, we concentrate on the security risk of power terminal equipment and their vulnerability based on ATP attack detection and defense. We first analyze the attack mechanism of APT security attack based on power terminal equipment. Based on the analysis of the security and attack of power IoT terminal device, an ontology-based knowledge representation method of power terminal device and its vulnerability is proposed.
2020-08-07
Zhu, Weijun, Liu, Yichen, Fan, Yongwen, Liu, Yang, Liu, Ruitong.  2019.  If Air-Gap Attacks Encounter the Mimic Defense. 2019 9th International Conference on Information Science and Technology (ICIST). :485—490.
Air-gap attacks and mimic defense are two emerging techniques in the field of network attack and defense, respectively. However, direct confrontation between them has not yet appeared in the real world. Who will be the winner, if air-gap attacks encounter mimic defense? To this end, a preliminary analysis is conducted for exploring the possible the strategy space of game according to the core principles of air-gap attacks and mimic defense. On this basis, an architecture model is proposed, which combines some detectors for air-gap attacks and mimic defense devices. First, a Dynamic Heterogeneous Redundancy (DHR) structure is employed to be on guard against malicious software of air-gap attacks. Second, some detectors for air-gap attacks are used to detect some signal sent by air-gap attackers' transmitter. Third, the proposed architecture model is obtained by organizing the DHR structure and the detectors for air-gap attacks with some logical relationship. The simulated experimental results preliminarily confirm the power of the new model.
2020-07-27
Babay, Amy, Tantillo, Thomas, Aron, Trevor, Platania, Marco, Amir, Yair.  2018.  Network-Attack-Resilient Intrusion-Tolerant SCADA for the Power Grid. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :255–266.
As key components of the power grid infrastructure, Supervisory Control and Data Acquisition (SCADA) systems are likely to be targeted by nation-state-level attackers willing to invest considerable resources to disrupt the power grid. We present Spire, the first intrusion-tolerant SCADA system that is resilient to both system-level compromises and sophisticated network-level attacks and compromises. We develop a novel architecture that distributes the SCADA system management across three or more active sites to ensure continuous availability in the presence of simultaneous intrusions and network attacks. A wide-area deployment of Spire, using two control centers and two data centers spanning 250 miles, delivered nearly 99.999% of all SCADA updates initiated over a 30-hour period within 100ms. This demonstrates that Spire can meet the latency requirements of SCADA for the power grid.
2020-06-29
Ahuja, Nisha, Singal, Gaurav.  2019.  DDOS Attack Detection Prevention in SDN using OpenFlow Statistics. 2019 IEEE 9th International Conference on Advanced Computing (IACC). :147–152.
Software defined Network is a network defined by software, which is one of the important feature which makes the legacy old networks to be flexible for dynamic configuration and so can cater to today's dynamic application requirement. It is a programmable network but it is prone to different type of attacks due to its centralized architecture. The author provided a solution to detect and prevent Distributed Denial of service attack in the paper. Mininet [5] which is a popular emulator for Software defined Network is used. We followed the approach in which collection of the traffic statistics from the various switches is done. After collection we calculated the packet rate and bandwidth which shoots up to high values when attack take place. The abrupt increase detects the attack which is then prevented by changing the forwarding logic of the host nodes to drop the packets instead of forwarding. After this, no more packets will be forwarded and then we also delete the forwarding rule in the flow table. Hence, we are finding out the change in packet rate and bandwidth to detect the attack and to prevent the attack we modify the forwarding logic of the switch flow table to drop the packets coming from malicious host instead of forwarding it.
2020-06-15
Chen, JiaYou, Guo, Hong, Hu, Wei.  2019.  Research on Improving Network Security of Embedded System. 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :136–138.
With the continuous development of information technology, our country has achieved great progress and development in Electronic Science and technology. Nowadays mobile embedded systems are gradually coming into people's vision. Mobile embedded system is a brand-new computer technology in the current computer technology. Now it has been widely used in enterprises. Mobile embedded system extends its functions mainly by combining the access capability of the Internet. Nowadays, embedded system network is widely welcomed by people. But for the embedded system network, there are also a variety of network attacks. Therefore, in the research process of this paper, we mainly start with the way of embedded network security and network attack, and then carry out the countermeasures to improve the network security of embedded system, which is to provide a good reference for improving the security and stability of embedded system.
2020-05-15
Chaves, Cesar G., Azad, Siavoosh Payandeh, Sepulveda, Johanna, Hollstein, Thomas.  2019.  Detecting and Mitigating Low-and-Slow DoS Attacks in NoC-based MPSoCs. 2019 14th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC). :82—89.
As Multi-Processor Systems-on-Chip (MPSoCs) permeate the Internet by powering IoT devices, they are exposed to new threats. One major threat is Denial-of-Service (DoS) attacks, which make communication services slow or even unavailable. While mainly studied on desktop and server systems, some DoS attacks on mobile devices and Network-on-Chip (NoC) platforms have also been considered. In the context of NoC-based MPSoC architectures, previous works have explored flooding DoS attacks and their countermeasures, however, these protection techniques are ineffective to mitigate new DoS attacks. Recently, a shift of the network attack paradigm from flooding DoS to Low-and-Slow DoS has been observed. To this end, we present two contributions. First, we demonstrate, for the first time, the impact of Low-and-Slow DoS attacks in NoC environments. Second, we propose a lightweight online monitor able to detect and mitigate these attacks. Results show that our countermeasure is feasible and that it effectively mitigates this new attack. Moreover, since the monitors are placed at the entry points of the network, both, single- and multi-source attacks can be neutralized.
2020-05-08
Wu, Peilun, Guo, Hui.  2019.  LuNet: A Deep Neural Network for Network Intrusion Detection. 2019 IEEE Symposium Series on Computational Intelligence (SSCI). :617—624.

Network attack is a significant security issue for modern society. From small mobile devices to large cloud platforms, almost all computing products, used in our daily life, are networked and potentially under the threat of network intrusion. With the fast-growing network users, network intrusions become more and more frequent, volatile and advanced. Being able to capture intrusions in time for such a large scale network is critical and very challenging. To this end, the machine learning (or AI) based network intrusion detection (NID), due to its intelligent capability, has drawn increasing attention in recent years. Compared to the traditional signature-based approaches, the AI-based solutions are more capable of detecting variants of advanced network attacks. However, the high detection rate achieved by the existing designs is usually accompanied by a high rate of false alarms, which may significantly discount the overall effectiveness of the intrusion detection system. In this paper, we consider the existence of spatial and temporal features in the network traffic data and propose a hierarchical CNN+RNN neural network, LuNet. In LuNet, the convolutional neural network (CNN) and the recurrent neural network (RNN) learn input traffic data in sync with a gradually increasing granularity such that both spatial and temporal features of the data can be effectively extracted. Our experiments on two network traffic datasets show that compared to the state-of-the-art network intrusion detection techniques, LuNet not only offers a high level of detection capability but also has a much low rate of false positive-alarm.

2020-05-04
Lin, Yiyong, Lin, Lei.  2019.  Design and Realization of a Computer Security Control Circuit for Local Area Network. 2019 International Conference on Communications, Information System and Computer Engineering (CISCE). :9–12.
A local area network (LAN) computer security control circuit is designed for the practical problem of LAN computer users "one machine crosses two networks" on this paper, which provides a protection barrier for the information security of LAN computers on the hardware. This paper briefly analyzes the risks and challenges faced by LAN security. The overall design idea, circuit design and working principle of LAN computer security control circuit are described in detail. The characteristics of the system are summarized. Finally, the design circuit is verified by practical application in the unit. The application results show that the circuit is stable in operation, simple in operation, safe and reliable, and convenient in installation and maintain, etc., which has achieved the design effect and played a good role in ensuring the security of the network information of the local area network.
2019-07-01
Kumar, S., Gaur, N., Kumar, A..  2018.  Developing a Secure Cyber Ecosystem for SCADA Architecture. 2018 Second International Conference on Computing Methodologies and Communication (ICCMC). :559–562.

Advent of Cyber has converted the entire World into a Global village. But, due to vurneabilites in SCADA architecture [1] national assests are more prone to cyber attacks.. Cyber invasions have a catastrophic effect in the minds of the civilian population, in terms of states security system. A robust cyber security is need of the hour to protect the critical information infastructrue & critical infrastructure of a country. Here, in this paper we scrutinize cyber terrorism, vurneabilites in SCADA network systems [1], [2] and concept of cyber resilience to combat cyber attacks.

2019-01-21
Fei, Y., Ning, J., Jiang, W..  2018.  A quantifiable Attack-Defense Trees model for APT attack. 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :2303–2306.
In order to deal with APT(Advanced Persistent Threat) attacks, this paper proposes a quantifiable Attack-Defense Tree model. First, the model gives both attack and defense leaf node a variety of security attributes. And then quantifies the nodes through the analytic hierarchy process. Finally, it analyzes the impact of the defense measures on the attack behavior. Through the application of the model, we can see that the quantifiable Attack-Defense Tree model can well describe the impact of defense measures on attack behavior.
2018-02-28
Shabalin, A. M., Kaliberda, E. A..  2017.  The organization of arrangements set to ensure enterprise IPV6 network secure work by modern switching equipment tools (using the example of a network attack on a default gateway). 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics). :1–8.

The article issue is the enterprise information protection within the internet of things concept. The aim of research is to develop arrangements set to ensure secure enterprise IPv6 network operating. The object of research is the enterprise IPv6 network. The subject of research is modern switching equipment as a tool to ensure network protection. The research task is to prioritize functioning of switches in production and corporation enterprise networks, to develop a network host protection algorithm, to test the developed algorithm on the Cisco Packet Tracer 7 software emulator. The result of research is the proposed approach to IPv6-network security based on analysis of modern switches functionality, developed and tested enterprise network host protection algorithm under IPv6-protocol with an automated network SLAAC-configuration control, a set of arrangements for resisting default enterprise gateway attacks, using ACL, VLAN, SEND, RA Guard security technology, which allows creating sufficiently high level of networks security.

2014-09-17
Chasaki, D., Wolf, T..  2012.  Attacks and Defenses in the Data Plane of Networks. Dependable and Secure Computing, IEEE Transactions on. 9:798-810.

Security issues in computer networks have focused on attacks on end systems and the control plane. An entirely new class of emerging network attacks aims at the data plane of the network. Data plane forwarding in network routers has traditionally been implemented with custom-logic hardware, but recent router designs increasingly use software-programmable network processors for packet forwarding. These general-purpose processing devices exhibit software vulnerabilities and are susceptible to attacks. We demonstrate-to our knowledge the first-practical attack that exploits a vulnerability in packet processing software to launch a devastating denial-of-service attack from within the network infrastructure. This attack uses only a single attack packet to consume the full link bandwidth of the router's outgoing link. We also present a hardware-based defense mechanism that can detect situations where malicious packets try to change the operation of the network processor. Using a hardware monitor, our NetFPGA-based prototype system checks every instruction executed by the network processor and can detect deviations from correct processing within four clock cycles. A recovery system can restore the network processor to a safe state within six cycles. This high-speed detection and recovery system can ensure that network processors can be protected effectively and efficiently from this new class of attacks.