Visible to the public Biblio

Filters: Keyword is interaction  [Clear All Filters]
2021-02-01
Papadopoulos, A. V., Esterle, L..  2020.  Situational Trust in Self-aware Collaborating Systems. 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). :91–94.
Trust among humans affects the way we interact with each other. In autonomous systems, this trust is often predefined and hard-coded before the systems are deployed. However, when systems encounter unfolding situations, requiring them to interact with others, a notion of trust will be inevitable. In this paper, we discuss trust as a fundamental measure to enable an autonomous system to decide whether or not to interact with another system, whether biological or artificial. These decisions become increasingly important when continuously integrating with others during runtime.
2020-10-05
Joseph, Matthew, Mao, Jieming, Neel, Seth, Roth, Aaron.  2019.  The Role of Interactivity in Local Differential Privacy. 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS). :94—105.

We study the power of interactivity in local differential privacy. First, we focus on the difference between fully interactive and sequentially interactive protocols. Sequentially interactive protocols may query users adaptively in sequence, but they cannot return to previously queried users. The vast majority of existing lower bounds for local differential privacy apply only to sequentially interactive protocols, and before this paper it was not known whether fully interactive protocols were more powerful. We resolve this question. First, we classify locally private protocols by their compositionality, the multiplicative factor by which the sum of a protocol's single-round privacy parameters exceeds its overall privacy guarantee. We then show how to efficiently transform any fully interactive compositional protocol into an equivalent sequentially interactive protocol with a blowup in sample complexity linear in this compositionality. Next, we show that our reduction is tight by exhibiting a family of problems such that any sequentially interactive protocol requires this blowup in sample complexity over a fully interactive compositional protocol. We then turn our attention to hypothesis testing problems. We show that for a large class of compound hypothesis testing problems - which include all simple hypothesis testing problems as a special case - a simple noninteractive test is optimal among the class of all (possibly fully interactive) tests.

2019-02-25
Zhang, Xiaoxi, Yin, Yong.  2018.  Design of Training Platform for Manned Submersible Vehicle Based on Virtual Reality Technology. Proceedings of the 31st International Conference on Computer Animation and Social Agents. :90-94.
Aiming at the problems of long training time, high cost and high risk existing in the deep working oceanauts, this paper, based on virtual reality technology, designed and developed the simulation system of diving and underwater operation process of Jiaolong which possesses multiple functions and good interactivity. Through the research on the motion model of A-frame swing, use Unity3D engine to develop the interactive simulation of diving and underwater operation process of Jiaolong after the 3D model of Jiaolong and mother ship was built by 3DMax. On the basis of giving full consideration to user experience, the real situation of diving and underwater operation process of Jiaolong was simulated, and the interactive manipulation function was realized.
2019-02-22
Dudley, John J., Schuff, Hendrik, Kristensson, Per Ola.  2018.  Bare-Handed 3D Drawing in Augmented Reality. Proceedings of the 2018 Designing Interactive Systems Conference. :241-252.

Head-mounted augmented reality (AR) enables embodied in situ drawing in three dimensions (3D). We explore 3D drawing interactions based on uninstrumented, unencumbered (bare) hands that preserve the user's ability to freely navigate and interact with the physical environment. We derive three alternative interaction techniques supporting bare-handed drawing in AR from the literature and by analysing several envisaged use cases. The three interaction techniques are evaluated in a controlled user study examining three distinct drawing tasks: planar drawing, path description, and 3D object reconstruction. The results indicate that continuous freehand drawing supports faster line creation than the control point based alternatives, although with reduced accuracy. User preferences for the different techniques are mixed and vary considerably between the different tasks, highlighting the value of diverse and flexible interactions. The combined effectiveness of these three drawing techniques is illustrated in an example application of 3D AR drawing.

2017-02-14
B. C. M. Cappers, J. J. van Wijk.  2015.  "SNAPS: Semantic network traffic analysis through projection and selection". 2015 IEEE Symposium on Visualization for Cyber Security (VizSec). :1-8.

Most network traffic analysis applications are designed to discover malicious activity by only relying on high-level flow-based message properties. However, to detect security breaches that are specifically designed to target one network (e.g., Advanced Persistent Threats), deep packet inspection and anomaly detection are indispensible. In this paper, we focus on how we can support experts in discovering whether anomalies at message level imply a security risk at network level. In SNAPS (Semantic Network traffic Analysis through Projection and Selection), we provide a bottom-up pixel-oriented approach for network traffic analysis where the expert starts with low-level anomalies and iteratively gains insight in higher level events through the creation of multiple selections of interest in parallel. The tight integration between visualization and machine learning enables the expert to iteratively refine anomaly scores, making the approach suitable for both post-traffic analysis and online monitoring tasks. To illustrate the effectiveness of this approach, we present example explorations on two real-world data sets for the detection and understanding of potential Advanced Persistent Threats in progress.

2015-05-05
Heimerl, F., Lohmann, S., Lange, S., Ertl, T..  2014.  Word Cloud Explorer: Text Analytics Based on Word Clouds. System Sciences (HICSS), 2014 47th Hawaii International Conference on. :1833-1842.

Word clouds have emerged as a straightforward and visually appealing visualization method for text. They are used in various contexts as a means to provide an overview by distilling text down to those words that appear with highest frequency. Typically, this is done in a static way as pure text summarization. We think, however, that there is a larger potential to this simple yet powerful visualization paradigm in text analytics. In this work, we explore the usefulness of word clouds for general text analysis tasks. We developed a prototypical system called the Word Cloud Explorer that relies entirely on word clouds as a visualization method. It equips them with advanced natural language processing, sophisticated interaction techniques, and context information. We show how this approach can be effectively used to solve text analysis tasks and evaluate it in a qualitative user study.