Visible to the public Biblio

Filters: Keyword is Edge Processing  [Clear All Filters]
2022-11-08
Wei, Yijie, Cao, Qiankai, Gu, Jie, Otseidu, Kofi, Hargrove, Levi.  2020.  A Fully-integrated Gesture and Gait Processing SoC for Rehabilitation with ADC-less Mixed-signal Feature Extraction and Deep Neural Network for Classification and Online Training. 2020 IEEE Custom Integrated Circuits Conference (CICC). :1–4.
An ultra-low-power gesture and gait classification SoC is presented for rehabilitation application featuring (1) mixed-signal feature extraction and integrated low-noise amplifier eliminating expensive ADC and digital feature extraction, (2) an integrated distributed deep neural network (DNN) ASIC supporting a scalable multi-chip neural network for sensor fusion with distortion resiliency for low-cost front end modules, (3) onchip learning of DNN engine allowing in-situ training of user specific operations. A 12-channel 65nm CMOS test chip was fabricated with 1μW power per channel, less than 3ms computation latency, on-chip training for user-specific DNN model and multi-chip networking capability.
2022-08-04
Boubakri, Marouene, Chiatante, Fausto, Zouari, Belhassen.  2021.  Towards a firmware TPM on RISC-V. 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). :647—650.
To develop the next generation of Internet of Things, Edge devices and systems which leverage progress in enabling technologies such as 5G, distributed computing and artificial intelligence (AI), several requirements need to be developed and put in place to make the devices smarter. A major requirement for all the above applications is the long-term security and trust computing infrastructure. Trusted Computing requires the introduction inside of the platform of a Trusted Platform Module (TPM). Traditionally, a TPM was a discrete and dedicated module plugged into the platform to give TPM capabilities. Recently, processors manufacturers started integrating trusted computing features into their processors. A significant drawback of this approach is the need for a permanent modification of the processor microarchitecture. In this context, we suggest an analysis and a design of a software-only TPM for RISC-V processors based on seL4 microkernel and OP-TEE.