Biblio
Document integrity and origin for E2E S2S in IoTcloud have recently received considerable attention because of their importance in the real-world fields. Maintaining integrity could protect decisions made based on these message/image documents. Authentication and integrity solutions have been conducted to recognise or protect any modification in the exchange of documents between E2E S2S (smart-to-smart). However, none of the proposed schemes appear to be sufficiently designed as a secure scheme to prevent known attacks or applicable to smart devices. We propose a robust scheme that aims to protect the integrity of documents for each users session by integrating HMAC-SHA-256, handwritten feature extraction using a local binary pattern, one-time random pixel sequence based on RC4 to randomly hide authentication codes using LSB. The proposed scheme can provide users with one-time bio-key, robust message anonymity and a disappearing authentication code that does not draw the attention of eavesdroppers. Thus, the scheme improves the data integrity for a users messages/image documents, phase key agreement, bio-key management and a one-time message/image document code for each users session. The concept of stego-anonymity is also introduced to provide additional security to cover a hashed value. Finally, security analysis and experimental results demonstrate and prove the invulnerability and efficiency of the proposed scheme.
Many countries around the world have realized the benefits of the e-government platform in peoples' daily life, and accordingly have already made partial implementations of the key e-government processes. However, before full implementation of all potential services can be made, governments demand the deployment of effective information security measures to ensure secrecy and privacy of their citizens. In this paper, a robust watermarking algorithm is proposed to provide copyright protection for e-government document images. The proposed algorithm utilizes two transforms: the Discrete Wavelet Transformation (DWT) and the Singular Value Decomposition (SVD). Experimental results demonstrate that the proposed e-government document images watermarking algorithm performs considerably well compared to existing relevant algorithms.
Because cloud storage services have been broadly used in enterprises for online sharing and collaboration, sensitive information in images or documents may be easily leaked outside the trust enterprise on-premises due to such cloud services. Existing solutions to this problem have not fully explored the tradeoffs among application performance, service scalability, and user data privacy. Therefore, we propose CloudDLP, a generic approach for enterprises to automatically sanitize sensitive data in images and documents in browser-based cloud storage. To the best of our knowledge, CloudDLP is the first system that automatically and transparently detects and sanitizes both sensitive images and textual documents without compromising user experience or application functionality on browser-based cloud storage. To prevent sensitive information escaping from on-premises, CloudDLP utilizes deep learning methods to detect sensitive information in both images and textual documents. We have evaluated the proposed method on a number of typical cloud applications. Our experimental results show that it can achieve transparent and automatic data sanitization on the cloud storage services with relatively low overheads, while preserving most application functionalities.
Keystroke Dynamics is the study of typing patterns and rhythm for personal identification and traits. Keystrokes may be analysed as fixed text such as passwords or as continuous typed text such as documents. This paper reviews different classification metrics for continuous text, such as the A and R metrics, Canberra, Manhattan and Euclidean and introduces a variant of the Minkowski distance. To test the metrics, we adopted a substantial dataset containing 239 thousand records acquired under real, harsh, and unidealised conditions. We propose a new parameter for the Minkowski metric, and we reinforce another for the A metric, as initially stated by its authors.
Arabic handwritten documents present specific challenges due to the cursive nature of the writing and the presence of diacritical marks. Moreover, one of the largest labeled database of Arabic handwritten documents, the OpenHart-NIST database includes specific noise, namely guidelines, that has to be addressed. We propose several approaches to process these documents. First a guideline detection approach has been developed, based on K-means, that detects the documents that include guidelines. We then propose a series of preprocessing at text-line level to reduce the noise effects. For text-lines including guidelines, a guideline removal preprocessing is described and existing keystroke restoration approaches are assessed. In addition, we propose a preprocessing that combines noise removal and deskewing by removing line fragments from neighboring text lines, while searching for the principal orientation of the text-line. We provide recognition results, showing the significant improvement brought by the proposed processings.
Document image binarization is performed to segment foreground text from background text in badly degraded documents. In this paper, a comprehensive survey has been conducted on some state-of-the-art document image binarization techniques. After describing these document images binarization techniques, their performance have been compared with the help of various evaluation performance metrics which are widely used for document image analysis and recognition. On the basis of this comparison, it has been found out that the adaptive contrast method is the best performing method. Accordingly, the partial results that we have obtained for the adaptive contrast method have been stated and also the mathematical model and block diagram of the adaptive contrast method has been described in detail.
As a very valuable cultural heritage, palm leaf manuscripts offer a new challenge in document analysis system due to the specific characteristics on physical support of the manuscript. With the aim of finding an optimal binarization method for palm leaf manuscript images, creating a new ground truth binarized image is a necessary step in document analysis of palm leaf manuscript. But, regarding to the human intervention in ground truthing process, an important remark about the subjectivity effect on the construction of ground truth binarized image has been analysed and reported. In this paper, we present an experiment in a real condition to analyse the existance of human subjectivity on the construction of ground truth binarized image of palm leaf manuscript images and to measure quantitatively the ground truth variability with several binarization evaluation metrics.
With the advancement of technology, the world has not only become a better place to live in but have also lost the privacy and security of shared data. Information in any form is never safe from the hands of unauthorized accessing individuals. Here, in our paper we propose an approach by which we can preserve data using visual cryptography. In this paper, two sixteen segment displayed text is broken into two shares that does not reveal any information about the original images. By this process we have obtained satisfactory results in statistical and structural testes.
This paper presents a novel visual analytics technique developed to support exploratory search tasks for event data document collections. The technique supports discovery and exploration by clustering results and overlaying cluster summaries onto coordinated timeline and map views. Users can also explore and interact with search results by selecting clusters to filter and re-cluster the data with animation used to smooth the transition between views. The technique demonstrates a number of advantages over alternative methods for displaying and exploring geo-referenced search results and spatio-temporal data. Firstly, cluster summaries can be presented in a manner that makes them easy to read and scan. Listing representative events from each cluster also helps the process of discovery by preserving the diversity of results. Also, clicking on visual representations of geo-temporal clusters provides a quick and intuitive way to navigate across space and time simultaneously. This removes the need to overload users with the display of too many event labels at any one time. The technique was evaluated with a group of nineteen users and compared with an equivalent text based exploratory search engine.