Visible to the public Biblio

Filters: Keyword is Plasma measurements  [Clear All Filters]
2023-05-12
Chen, C., Becker, J. R., Farrell, J. J..  2022.  Energy Confinement Time in a Magnetically Confined Thermonuclear Fusion Reactor. 2022 IEEE International Conference on Plasma Science (ICOPS). :1–1.
The single most important scientific question in fusion research may be confinement in a fusion plasma [1] . A recently-developed theoretical model [2] is reviewed for the confinement time of ion kinetic energy in a material where fusion reactions occur. In the theoretical model where ion stopping was considered as a key mechanism for ion kinetic energy loss, an estimate was obtained for the confinement time of ion kinetic energy in a D-T plasma - and found to be orders of magnitude lower than required in the Lawson criterion. As ions transfer their kinetic energies to electrons via ion stopping and thermalization between the ions and the electrons takes place, spontaneous electron cyclotron radiation is identified as a key mechanism for electron kinetic energy loss in a magnetically confined plasma. The energy confinement time is obtained and found in agreement with measurements from TFTR [1] and Wendelstein 7-X [3] . An advanced Lawson criterion is obtained for a magnetically confined thermonuclear fusion reactor.
ISSN: 2576-7208
2022-08-26
Zimmer, D., Conti, F., Beg, F., Gomez, M. R., Jennings, C. A., Myers, C. E., Bennett, N..  2021.  Effects of Applied Axial Magnetic Fields on Current Coupling in Maglif Experiments on the Z Machine. 2021 IEEE International Conference on Plasma Science (ICOPS). :1—1.
The Z machine is a pulsed power generator located at Sandia National Laboratories in Albuquerque, New Mexico. It is capable of producing a \textbackslashtextgreater20 MA current pulse that is directed onto an experimental load. While a diverse array of experiments are conducted on the Z machine, including x-ray production and dynamic materials science experiments, the focus of this presentation are the Magnetic Liner Inertial Fusion (MagLIF) experiments. In these experiments, an axial magnetic field is applied to the load region, where a cylindrical, fuel-filled metal liner is imploded. We explore the effects of this field on the ability to efficiently couple the generator current to the load, and the extent to which this field interrupts the magnetic insulation of the inner-most transmission line. We find that at the present-day applied field values, the effects of the applied field on current coupling are negligible. Estimates of the potential impact on current coupling of the larger applied field values planned for future experiments are also given. Shunted current is measured with B-dot probes and flyer velocimetry techniques. Analytical calculations, 2D particle-in-cell simulations, and experimental measurements will be presented.