Biblio
Analyzing and gaining insights from a large amount of textual conversations can be quite challenging for a user, especially when the discussions become very long. During my doctoral research, I have focused on integrating Information Visualization (InfoVis) with Natural Language Processing (NLP) techniques to better support the user's task of exploring and analyzing conversations. For this purpose, I have designed a visual text analytics system that supports the user exploration, starting from a possibly large set of conversations, then narrowing down to a subset of conversations, and eventually drilling-down to a set of comments of one conversation. While so far our approach is evaluated mainly based on lab studies, in my on-going and future work I plan to evaluate our approach via online longitudinal studies.
Online conversations, such as blogs, provide rich amount of information and opinions about popular queries. Given a query, traditional blog sites return a set of conversations often consisting of thousands of comments with complex thread structure. Since the interfaces of these blog sites do not provide any overview of the data, it becomes very difficult for the user to explore and analyze such a large amount of conversational data. In this paper, we present MultiConVis, a visual text analytics system designed to support the exploration of a collection of online conversations. Our system tightly integrates NLP techniques for topic modeling and sentiment analysis with information visualizations, by considering the unique characteristics of online conversations. The resulting interface supports the user exploration, starting from a possibly large set of conversations, then narrowing down to the subset of conversations, and eventually drilling-down to the set of comments of one conversation. Our evaluations through case studies with domain experts and a formal user study with regular blog readers illustrate the potential benefits of our approach, when compared to a traditional blog reading interface.
The huge amount of user log data collected by search engine providers creates new opportunities to understand user loyalty and defection behavior at an unprecedented scale. However, this also poses a great challenge to analyze the behavior and glean insights into the complex, large data. In this paper, we introduce LoyalTracker, a visual analytics system to track user loyalty and switching behavior towards multiple search engines from the vast amount of user log data. We propose a new interactive visualization technique (flow view) based on a flow metaphor, which conveys a proper visual summary of the dynamics of user loyalty of thousands of users over time. Two other visualization techniques, a density map and a word cloud, are integrated to enable analysts to gain further insights into the patterns identified by the flow view. Case studies and the interview with domain experts are conducted to demonstrate the usefulness of our technique in understanding user loyalty and switching behavior in search engines.