Biblio
{Unikernel is smaller in size than existing operating systems and can be started and shut down much more quickly and safely, resulting in greater flexibility and security. Since unikernel does not include large modules like the file system in its library to reduce its size, it is common to choose offloading to handle file IO. However, the processing of IO offload of unikernel transfers the file IO command to the proxy of the file server and copies the file IO result of the proxy. This can result in a trade-off of rapid processing, an advantage of unikernel. In this paper, we propose a method to offload file IO and to perform file IO with direct copy from file server to unikernel}.
Data can be stored securely in various storage servers. But in the case of a server failure, or data theft from a certain number of servers, the remaining data becomes inadequate for use. Data is stored securely using secret sharing schemes, so that data can be reconstructed even if some of the servers fail. But not much work has been carried out in the direction of updation of this data. This leads to the problem of updation when two or more concurrent requests arrive and thus, it results in inconsistency. Our work proposes a novel method to store data securely with concurrent update requests using Petri Nets, under the assumption that the number of nodes is very large and the requests for updates are very frequent.
Deep learning is a highly effective machine learning technique for large-scale problems. The optimization of nonconvex functions in deep learning literature is typically restricted to the class of first-order algorithms. These methods rely on gradient information because of the computational complexity associated with the second derivative Hessian matrix inversion and the memory storage required in large scale data problems. The reward for using second derivative information is that the methods can result in improved convergence properties for problems typically found in a non-convex setting such as saddle points and local minima. In this paper we introduce TRMinATR - an algorithm based on the limited memory BFGS quasi-Newton method using trust region - as an alternative to gradient descent methods. TRMinATR bridges the disparity between first order methods and second order methods by continuing to use gradient information to calculate Hessian approximations. We provide empirical results on the classification task of the MNIST dataset and show robust convergence with preferred generalization characteristics.
Living in the age of digital transformation, companies and individuals are moving to public and private clouds to store and retrieve information, hence the need to store and retrieve data is exponentially increasing. Existing storage technologies such as DAS are facing a big challenge to deal with these huge amount of data. Hence, newer technologies should be adopted. Storage Area Network (SAN) is a distributed storage technology that aggregates data from several private nodes into a centralized secure place. Looking at SAN from a security perspective, clearly physical security over multiple geographical remote locations is not adequate to ensure a full security solution. A SAN security framework needs to be developed and designed. This work investigates how SAN protocols work (FC, ISCSI, FCOE). It also investigates about other storages technologies such as Network Attached Storage (NAS) and Direct Attached Storage (DAS) including different metrics such as: IOPS (input output per second), Throughput, Bandwidths, latency, cashing technologies. This research work is focusing on the security vulnerabilities in SAN listing different attacks in SAN protocols and compare it to other such as NAS and DAS. Another aspect of this work is to highlight performance factors in SAN in order to find a way to improve the performance focusing security solutions aimed to enhance the security level in SAN.
This paper introduces a secured and distributed Big Data storage scheme with multiple authorizations. It divides the Big Data into small chunks and distributes them through multiple Cloud locations. The Shamir's Secret Sharing and Secure Hash Algorithm are employed to provide the security and authenticity of this work. The proposed methodology consists of two phases: the distribution and retrieving phases. The distribution phase comprises three operations of dividing, encrypting, and distribution. The retrieving phase performs collecting and verifying operations. To increase the security level, the encryption key is divided into secret shares using Shamir's Algorithm. Moreover, the Secure Hash Algorithm is used to verify the Big Data after retrieving from the Cloud. The experimental results show that the proposed design can reconstruct a distributed Big Data with good speed while conserving the security and authenticity properties.
Ciphertext storage can effectively solve the security problems in cloud storage, among which the ciphertext policy attribute-based encryption (CP-ABE) is more suitable for ciphertext access control in cloud storage environment for it can achieve one-to-many ciphertext sharing. The existing attribute encryption scheme CP-ABE has problems with revocation such as coarse granularity, untimeliness, and low efficiency, which cannot meet the demands of cloud storage. This paper proposes an RCP-ABE scheme that supports real-time revocable fine-grained attributes for the existing attribute revocable scheme, the scheme of this paper adopts the version control technology to realize the instant revocation of the attributes. In the key update mechanism, the subset coverage technology is used to update the key, which reduces the workload of the authority. The experimental analysis shows that RCP-ABE is more efficient than other schemes.
Ciphertext Policy Attribute Based Encryption techniques provide fine grained access control to securely share the data in the organizations where access rights of users vary according to their roles. We have noticed that various key delegation mechanisms are provided for CP-ABE schemes but no key delegation mechanism exists for CP-ABE with hidden access policy. In practical, users' identity may be revealed from access policy in the organizations and unlimited further delegations may results in unauthorized data access. For maintaining the users' anonymity, the access structure should be hidden and every user must be restricted for specified further delegations. In this work, we have presented a flexible secure key delegation mechanism for CP-ABE with hidden access structure. The proposed scheme enhances the capability of existing CP-ABE schemes by supporting flexible delegation, attribute revocation and user revocation with negligible enhancement in computational cost.
KP-ABE mechanism emerges as one of the most suitable security scheme for asymmetric encryption. It has been widely used to implement access control solutions. However, due to its expensive overhead, it is difficult to consider this cryptographic scheme in resource-limited networks, such as the IoT. As the cloud has become a key infrastructural support for IoT applications, it is interesting to exploit cloud resources to perform heavy operations. In this paper, a collaborative variant of KP-ABE named C-KP-ABE for cloud-based IoT applications is proposed. Our proposal is based on the use of computing power and storage capacities of cloud servers and trusted assistant nodes to run heavy operations. A performance analysis is conducted to show the effectiveness of the proposed solution.
As an efficient deletion method, unlinking is widely used in cloud storage. While unlinking is a kind of incomplete deletion, `deleted data' remains on cloud and can be recovered. To make `deleted data' unrecoverable, overwriting is an effective method on cloud. Users lose control over their data on cloud once deleted, so it is difficult for them to confirm overwriting. In face of such a crucial problem, we propose a Provable and Traceable Assured Deletion (PTAD) scheme in cloud storage based on blockchain. PTAD scheme relies on overwriting to achieve assured deletion. We reference the idea of data integrity checking and design algorithms to verify if cloud overwrites original blocks properly as specific patterns. We utilize technique of smart contract in blockchain to automatically execute verification and keep transaction in ledger for tracking. The whole scheme can be divided into three stages-unlinking, overwriting and verification-and we design one specific algorithm for each stage. For evaluation, we implement PTAD scheme on cloud and construct a consortium chain with Hyperledger Fabric. The performance shows that PTAD scheme is effective and feasible.
Image encryption is an essential part of a Visual Cryptography. Existing traditional sequential encryption techniques are infeasible to real-time applications. High-performance reformulations of such methods are increasingly growing over the last decade. These reformulations proved better performances over their sequential counterparts. A rotational encryption scheme encrypts the images in such a way that the decryption is possible with the rotated encrypted images. A parallel rotational encryption technique makes use of a high-performance device. But it less-leverages the optimizations offered by them. We propose a rotational image encryption technique which makes use of memory coalescing provided by the Compute Unified Device Architecture (CUDA). The proposed scheme achieves improved global memory utilization and increased efficiency.
It seems impossible to certify that a remote hosting service does not leak its users' data - or does quantum mechanics make it possible? We investigate if a server hosting data can information-theoretically prove its definite deletion using a "BB84-like" protocol. To do so, we first rigorously introduce an alternative to privacy by encryption: privacy delegation. We then apply this novel concept to provable deletion and remote data storage. For both tasks, we present a protocol, sketch its partial security, and display its vulnerability to eavesdropping attacks targeting only a few bits.
Nowadays network applications have more focus on content distribution which is hard to tackle in IP based Internet. Information Centric Network (ICN) have the ability to overcome this problem for various scenarios, specifically for Vehicular Ad Hoc Networks (VANETs). Conventional IP based system have issues like mobility management hence ICN solve this issue because data fetching is not dependent on a particular node or physical location. Many initial investigations have performed on an instance of ICN commonly known as Named Data Networking (NDN). However, NDN exposes the new type of security susceptibilities, poisoning cache attack, flooding Interest attack, and violation of privacy because the content in the network is called by the name. This paper focused on mitigation of Interest flooding attack by proposing new scheme, named Interest Flooding Attack Mitigation Scheme (IFAMS) in Vehicular Named Data Network (VNDN). Simulation results depict that proposed IFAMS scheme mitigates the Interest flooding attack in the network.
Recently, data protection has become increasingly important in cloud environments. The cloud platform has global user information, rich storage resource allocation information, and a fuller understanding of data attributes. At the same time, there is an urgent need for data access control to provide data security, and software-defined network, as a ready-made facility, has a global network view, global network management capabilities, and programable network rules. In this paper, we present an approach, named High-Performance Software-Defined Data Access Network (HP-SDDAN), providing software-defined data access network architecture, global data attribute management and attribute-based data access network. HP-SDDAN combines the excellent features of cloud platform and software-defined network, and fully considers the performance to implement software-defined data access network. In evaluation, we verify the effectiveness and efficiency of HP-SDDAN implementation, with only 1.46% overhead to achieve attribute-based data access control of attribute-based differential privacy.