Visible to the public Biblio

Filters: Keyword is question answering (information retrieval)  [Clear All Filters]
2023-04-14
Johri, Era, Dharod, Leesa, Joshi, Rasika, Kulkarni, Shreya, Kundle, Vaibhavi.  2022.  Video Captcha Proposition based on VQA, NLP, Deep Learning and Computer Vision. 2022 5th International Conference on Advances in Science and Technology (ICAST). :196–200.
Visual Question Answering or VQA is a technique used in diverse domains ranging from simple visual questions and answers on short videos to security. Here in this paper, we talk about the video captcha that will be deployed for user authentication. Randomly any short video of length 10 to 20 seconds will be displayed and automated questions and answers will be generated by the system using AI and ML. Automated Programs have maliciously affected gateways such as login, registering etc. Therefore, in today's environment it is necessary to deploy such security programs that can recognize the objects in a video and generate automated MCQs real time that can be of context like the object movements, color, background etc. The features in the video highlighted will be recorded for generating MCQs based on the short videos. These videos can be random in nature. They can be taken from any official websites or even from your own local computer with prior permission from the user. The format of the video must be kept as constant every time and must be cross checked before flashing it to the user. Once our system identifies the captcha and determines the authenticity of a user, the other website in which the user wants to login, can skip the step of captcha verification as it will be done by our system. A session will be maintained for the user, eliminating the hassle of authenticating themselves again and again for no reason. Once the video will be flashed for an IP address and if the answers marked by the user for the current video captcha are correct, we will add the information like the IP address, the video and the questions in our database to avoid repeating the same captcha for the same IP address. In this paper, we proposed the methodology of execution of the aforementioned and will discuss the benefits and limitations of video captcha along with the visual questions and answering.
2020-10-05
Liu, Donglei, Niu, Zhendong, Zhang, Chunxia, Zhang, Jiadi.  2019.  Multi-Scale Deformable CNN for Answer Selection. IEEE Access. 7:164986—164995.

The answer selection task is one of the most important issues within the automatic question answering system, and it aims to automatically find accurate answers to questions. Traditional methods for this task use manually generated features based on tf-idf and n-gram models to represent texts, and then select the right answers according to the similarity between the representations of questions and the candidate answers. Nowadays, many question answering systems adopt deep neural networks such as convolutional neural network (CNN) to generate the text features automatically, and obtained better performance than traditional methods. CNN can extract consecutive n-gram features with fixed length by sliding fixed-length convolutional kernels over the whole word sequence. However, due to the complex semantic compositionality of the natural language, there are many phrases with variable lengths and be composed of non-consecutive words in natural language, such as these phrases whose constituents are separated by other words within the same sentences. But the traditional CNN is unable to extract the variable length n-gram features and non-consecutive n-gram features. In this paper, we propose a multi-scale deformable convolutional neural network to capture the non-consecutive n-gram features by adding offset to the convolutional kernel, and also propose to stack multiple deformable convolutional layers to mine multi-scale n-gram features by the means of generating longer n-gram in higher layer. Furthermore, we apply the proposed model into the task of answer selection. Experimental results on public dataset demonstrate the effectiveness of our proposed model in answer selection.

2019-11-25
Zuin, Gianlucca, Chaimowicz, Luiz, Veloso, Adriano.  2018.  Learning Transferable Features For Open-Domain Question Answering. 2018 International Joint Conference on Neural Networks (IJCNN). :1–8.

Corpora used to learn open-domain Question-Answering (QA) models are typically collected from a wide variety of topics or domains. Since QA requires understanding natural language, open-domain QA models generally need very large training corpora. A simple way to alleviate data demand is to restrict the domain covered by the QA model, leading thus to domain-specific QA models. While learning improved QA models for a specific domain is still challenging due to the lack of sufficient training data in the topic of interest, additional training data can be obtained from related topic domains. Thus, instead of learning a single open-domain QA model, we investigate domain adaptation approaches in order to create multiple improved domain-specific QA models. We demonstrate that this can be achieved by stratifying the source dataset, without the need of searching for complementary data unlike many other domain adaptation approaches. We propose a deep architecture that jointly exploits convolutional and recurrent networks for learning domain-specific features while transferring domain-shared features. That is, we use transferable features to enable model adaptation from multiple source domains. We consider different transference approaches designed to learn span-level and sentence-level QA models. We found that domain-adaptation greatly improves sentence-level QA performance, and span-level QA benefits from sentence information. Finally, we also show that a simple clustering algorithm may be employed when the topic domains are unknown and the resulting loss in accuracy is negligible.

2019-09-04
Xiong, M., Li, A., Xie, Z., Jia, Y..  2018.  A Practical Approach to Answer Extraction for Constructing QA Solution. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). :398–404.
Question Answering system(QA) plays an increasingly important role in the Internet age. The proportion of using the QA is getting higher and higher for the Internet users to obtain knowledge and solve problems, especially in the modern agricultural filed. However, the answer quality in QA varies widely due to the agricultural expert's level. Answer quality assessment is important. Due to the lexical gap between questions and answers, the existing approaches are not quite satisfactory. A practical approach RCAS is proposed to rank the candidate answers, which utilizes the support sets to reduce the impact of lexical gap between questions and answers. Firstly, Similar questions are retrieved and support sets are produced with their high-quality answers. Based on the assumption that high quality answers would also have intrinsic similarity, the quality of candidate answers are then evaluated through their distance from the support sets. Secondly, Different from the existing approaches, previous knowledge from similar question-answer pairs are used to bridge the straight lexical and semantic gaps between questions and answers. Experiments are implemented on approximately 0.15 million question-answer pairs about agriculture, dietetics and food from Yahoo! Answers. The results show that our approach can rank the candidate answers more precisely.
Liang, J., Jiang, L., Cao, L., Li, L., Hauptmann, A..  2018.  Focal Visual-Text Attention for Visual Question Answering. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. :6135–6143.
Recent insights on language and vision with neural networks have been successfully applied to simple single-image visual question answering. However, to tackle real-life question answering problems on multimedia collections such as personal photos, we have to look at whole collections with sequences of photos or videos. When answering questions from a large collection, a natural problem is to identify snippets to support the answer. In this paper, we describe a novel neural network called Focal Visual-Text Attention network (FVTA) for collective reasoning in visual question answering, where both visual and text sequence information such as images and text metadata are presented. FVTA introduces an end-to-end approach that makes use of a hierarchical process to dynamically determine what media and what time to focus on in the sequential data to answer the question. FVTA can not only answer the questions well but also provides the justifications which the system results are based upon to get the answers. FVTA achieves state-of-the-art performance on the MemexQA dataset and competitive results on the MovieQA dataset.
2017-12-12
Zhou, G., Huang, J. X..  2017.  Modeling and Learning Distributed Word Representation with Metadata for Question Retrieval. IEEE Transactions on Knowledge and Data Engineering. 29:1226–1239.

Community question answering (cQA) has become an important issue due to the popularity of cQA archives on the Web. This paper focuses on addressing the lexical gap problem in question retrieval. Question retrieval in cQA archives aims to find the existing questions that are semantically equivalent or relevant to the queried questions. However, the lexical gap problem brings a new challenge for question retrieval in cQA. In this paper, we propose to model and learn distributed word representations with metadata of category information within cQA pages for question retrieval using two novel category powered models. One is a basic category powered model called MB-NET and the other one is an enhanced category powered model called ME-NET which can better learn the distributed word representations and alleviate the lexical gap problem. To deal with the variable size of word representation vectors, we employ the framework of fisher kernel to transform them into the fixed-length vectors. Experimental results on large-scale English and Chinese cQA data sets show that our proposed approaches can significantly outperform state-of-the-art retrieval models for question retrieval in cQA. Moreover, we further conduct our approaches on large-scale automatic evaluation experiments. The evaluation results show that promising and significant performance improvements can be achieved.

Ktob, A., Li, Z..  2017.  The Arabic Knowledge Graph: Opportunities and Challenges. 2017 IEEE 11th International Conference on Semantic Computing (ICSC). :48–52.

Semantic Web has brought forth the idea of computing with knowledge, hence, attributing the ability of thinking to machines. Knowledge Graphs represent a major advancement in the construction of the Web of Data where machines are context-aware when answering users' queries. The English Knowledge Graph was a milestone realized by Google in 2012. Even though it is a useful source of information for English users and applications, it does not offer much for the Arabic users and applications. In this paper, we investigated the different challenges and opportunities prone to the life-cycle of the construction of the Arabic Knowledge Graph (AKG) while following some best practices and techniques. Additionally, this work suggests some potential solutions to these challenges. The proprietary factor of data creates a major problem in the way of harvesting this latter. Moreover, when the Arabic data is openly available, it is generally in an unstructured form which requires further processing. The complexity of the Arabic language itself creates a further problem for any automatic or semi-automatic extraction processes. Therefore, the usage of NLP techniques is a feasible solution. Some preliminary results are presented later in this paper. The AKG has very promising outcomes for the Semantic Web in general and the Arabic community in particular. The goal of the Arabic Knowledge Graph is mainly the integration of the different isolated datasets available on the Web. Later, it can be used in both the academic (by providing a large dataset for many different research fields and enhance discovery) and commercial sectors (by improving search engines, providing metadata, interlinking businesses).

2015-05-05
Baughman, A.K., Chuang, W., Dixon, K.R., Benz, Z., Basilico, J..  2014.  DeepQA Jeopardy! Gamification: A Machine-Learning Perspective. Computational Intelligence and AI in Games, IEEE Transactions on. 6:55-66.

DeepQA is a large-scale natural language processing (NLP) question-and-answer system that responds across a breadth of structured and unstructured data, from hundreds of analytics that are combined with over 50 models, trained through machine learning. After the 2011 historic milestone of defeating the two best human players in the Jeopardy! game show, the technology behind IBM Watson, DeepQA, is undergoing gamification into real-world business problems. Gamifying a business domain for Watson is a composite of functional, content, and training adaptation for nongame play. During domain gamification for medical, financial, government, or any other business, each system change affects the machine-learning process. As opposed to the original Watson Jeopardy!, whose class distribution of positive-to-negative labels is 1:100, in adaptation the computed training instances, question-and-answer pairs transformed into true-false labels, result in a very low positive-to-negative ratio of 1:100 000. Such initial extreme class imbalance during domain gamification poses a big challenge for the Watson machine-learning pipelines. The combination of ingested corpus sets, question-and-answer pairs, configuration settings, and NLP algorithms contribute toward the challenging data state. We propose several data engineering techniques, such as answer key vetting and expansion, source ingestion, oversampling classes, and question set modifications to increase the computed true labels. In addition, algorithm engineering, such as an implementation of the Newton-Raphson logistic regression with a regularization term, relaxes the constraints of class imbalance during training adaptation. We conclude by empirically demonstrating that data and algorithm engineering are complementary and indispensable to overcome the challenges in this first Watson gamification for real-world business problems.