Visible to the public Biblio

Filters: Author is Li, A.  [Clear All Filters]
2021-01-28
Wang, W., Tang, B., Zhu, C., Liu, B., Li, A., Ding, Z..  2020.  Clustering Using a Similarity Measure Approach Based on Semantic Analysis of Adversary Behaviors. 2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC). :1—7.

Rapidly growing shared information for threat intelligence not only helps security analysts reduce time on tracking attacks, but also bring possibilities to research on adversaries' thinking and decisions, which is important for the further analysis of attackers' habits and preferences. In this paper, we analyze current models and frameworks used in threat intelligence that suited to different modeling goals, and propose a three-layer model (Goal, Behavior, Capability) to study the statistical characteristics of APT groups. Based on the proposed model, we construct a knowledge network composed of adversary behaviors, and introduce a similarity measure approach to capture similarity degree by considering different semantic links between groups. After calculating similarity degrees, we take advantage of Girvan-Newman algorithm to discover community groups, clustering result shows that community structures and boundaries do exist by analyzing the behavior of APT groups.

2019-09-04
Xiong, M., Li, A., Xie, Z., Jia, Y..  2018.  A Practical Approach to Answer Extraction for Constructing QA Solution. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). :398–404.
Question Answering system(QA) plays an increasingly important role in the Internet age. The proportion of using the QA is getting higher and higher for the Internet users to obtain knowledge and solve problems, especially in the modern agricultural filed. However, the answer quality in QA varies widely due to the agricultural expert's level. Answer quality assessment is important. Due to the lexical gap between questions and answers, the existing approaches are not quite satisfactory. A practical approach RCAS is proposed to rank the candidate answers, which utilizes the support sets to reduce the impact of lexical gap between questions and answers. Firstly, Similar questions are retrieved and support sets are produced with their high-quality answers. Based on the assumption that high quality answers would also have intrinsic similarity, the quality of candidate answers are then evaluated through their distance from the support sets. Secondly, Different from the existing approaches, previous knowledge from similar question-answer pairs are used to bridge the straight lexical and semantic gaps between questions and answers. Experiments are implemented on approximately 0.15 million question-answer pairs about agriculture, dietetics and food from Yahoo! Answers. The results show that our approach can rank the candidate answers more precisely.
2019-06-10
Xue, S., Zhang, L., Li, A., Li, X., Ruan, C., Huang, W..  2018.  AppDNA: App Behavior Profiling via Graph-Based Deep Learning. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. :1475-1483.

Better understanding of mobile applications' behaviors would lead to better malware detection/classification and better app recommendation for users. In this work, we design a framework AppDNA to automatically generate a compact representation for each app to comprehensively profile its behaviors. The behavior difference between two apps can be measured by the distance between their representations. As a result, the versatile representation can be generated once for each app, and then be used for a wide variety of objectives, including malware detection, app categorizing, plagiarism detection, etc. Based on a systematic and deep understanding of an app's behavior, we propose to perform a function-call-graph-based app profiling. We carefully design a graph-encoding method to convert a typically extremely large call-graph to a 64-dimension fix-size vector to achieve robust app profiling. Our extensive evaluations based on 86,332 benign and malicious apps demonstrate that our system performs app profiling (thus malware detection, classification, and app recommendation) to a high accuracy with extremely low computation cost: it classifies 4024 (benign/malware) apps using around 5.06 second with accuracy about 93.07%; it classifies 570 malware's family (total 21 families) using around 0.83 second with accuracy 82.3%; it classifies 9,730 apps' functionality with accuracy 33.3% for a total of 7 categories and accuracy of 88.1 % for 2 categories.

2019-03-04
Zhu, Z., Jiang, R., Jia, Y., Xu, J., Li, A..  2018.  Cyber Security Knowledge Graph Based Cyber Attack Attribution Framework for Space-ground Integration Information Network. 2018 IEEE 18th International Conference on Communication Technology (ICCT). :870–874.
Comparing with the traditional Internet, the space-ground integration information network has more complicated topology, wider coverage area and is more difficult to find the source of attacks. In this paper, a cyber attack attribution framework is proposed to trace the attack source in space-ground integration information network. First, we constructs a cyber security knowledge graph for space-ground integration information network. An automated attributing framework for cyber-attack is proposed. It attributes the source of the attack by querying the cyber security knowledge graph we constructed. Experiments show that the proposed framework can attribute network attacks simply, effectively, and automatically.