Visible to the public Biblio

Filters: Keyword is redactable blockchain  [Clear All Filters]
2023-07-14
Chen, Xiaofeng, Gao, Ying.  2022.  CDEdit: Redactable Blockchain with Cross-audit and Diversity Editing. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :945–952.
Redactable blockchain allows modifiers or voting committees with modification privileges to edit the data on the chain. Among them, trapdoor holders in chameleon-based hash redactable blockchains can quickly compute hash collisions for arbitrary data without breaking the link of the hash-chain. However, chameleon-based hash redactable blockchain schemes have difficulty solving issues such as editing operations with different granularity or conflicts and auditing modifiers that abuse editing privileges. To address the above challenges, we propose a redactable blockchain with Cross-audit and Diversity Editing (CDEdit). The proposed scheme distributes subdivided transaction-level and block-level tokens to the matching modifier committee to weaken the influence of central power. A number of modifiers are unpredictably selected based on reputation value proportions and the mapping of the consistent hash ring to enable diversity editing operations, and resist Sybil attacks. Meanwhile, an adaptive cross-auditing protocol is proposed to adjust the roles of modifiers and auditors dynamically. This protocol imposes a reputation penalty on the modifiers of illegal edits and solves the problems of abuse of editing privileges and collusion attacks. In addition, We used ciphertext policy attribute-based encryption (CP-ABE) and chameleon hashes with ephemeral trapdoor (CHET) for data modification, and present a system steps and security analysis of CDEdit. Finally, the extensive comparisons and evaluations show that our scheme costs less time overhead than other schemes and is suitable for complex application scenarios, e.g. IoT data management.
ISSN: 2324-9013
2023-01-13
Peng, Chunying, Xu, Haixia, Li, Peili.  2022.  Redactable Blockchain Using Lattice-based Chameleon Hash Function. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :94–98.
Blockchain as a tamper-proof, non-modifiable and traceable distributed ledger technology has received extensive attention. Although blockchain's immutability provides security guarantee, it prevents the development of new blockchain technology. As we think, there are several arguments to prefer a controlled modifiable blockchain, from the possibility to cancel the transaction and necessity to remove the illicit or harmful documents, to the ability to support the scalability of blockchain. Meanwhile, the rapid development of quantum technology has made the establishment of post-quantum cryptosystems an urgent need. In this paper, we put forward the first lattice-based redactable consortium blockchain scheme that makes it possible to rewrite or repeal the content of any blocks. Our approach uses a consensus-based election and lattice-based chameleon hash function (Cash and Hofheinz etc. EUROCRYPT 2010). With knowledge of secret trapdoor, the participant could find the hash collisions efficiently. And each member of the consortium blockchain has the right to edit the history.
Luo, Xinyi, Xu, Zhuo, Xue, Kaiping, Jiang, Qiantong, Li, Ruidong, Wei, David.  2022.  ScalaCert: Scalability-Oriented PKI with Redactable Consortium Blockchain Enabled "On-Cert" Certificate Revocation. 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS). :1236–1246.
As the voucher for identity, digital certificates and the public key infrastructure (PKI) system have always played a vital role to provide the authentication services. In recent years, with the increase in attacks on traditional centralized PKIs and the extensive deployment of blockchains, researchers have tried to establish blockchain-based secure decentralized PKIs and have made significant progress. Although blockchain enhances security, it brings new problems in scalability due to the inherent limitations of blockchain’s data structure and consensus mechanism, which become much severe for the massive access in the era of 5G and B5G. In this paper, we propose ScalaCert to mitigate the scalability problems of blockchain-based PKIs by utilizing redactable blockchain for "on-cert" revocation. Specifically, we utilize the redactable blockchain to record revocation information directly on the original certificate ("on-cert") and remove additional data structures such as CRL, significantly reducing storage overhead. Moreover, the combination of redactable and consortium blockchains brings a new kind of attack called deception of versions (DoV) attack. To defend against it, we design a random-block-node-check (RBNC) based freshness check mechanism. Security and performance analyses show that ScalaCert has sufficient security and effectively solves the scalability problem of the blockchain-based PKI system.