Visible to the public Biblio

Filters: Keyword is dual-stack  [Clear All Filters]
2023-02-24
Goto, Ren, Matama, Kazushige, Nishiwaki, Chihiro, Naito, Katsuhiro.  2022.  Proposal of an extended CYPHONIC adapter supporting general nodes using virtual IPv6 addresses. 2022 IEEE 11th Global Conference on Consumer Electronics (GCCE). :257—261.
The spread of the Internet of Things (IoT) and cloud services leads to a request for secure communication between devices, known as zero-trust security. The authors have been developing CYber PHysical Overlay Network over Internet Communication (CYPHONIC) to realize secure end-to-end communication among devices. A device requires installing the client program into the devices to realize secure communication over our overlay network. However, some devices refuse additional installation of external programs due to the limitation of system and hardware resources or the effect on system reliability. We proposed new technology, a CYPHONIC adapter, to support these devices. Currently, the CYPHONIC adapter supports only IPv4 virtual addresses and needs to be compatible with general devices that use IPv6. This paper proposes the dual-stack CYPHONIC adapter supporting IPv4/IPv6 virtual addresses for general devices. The prototype implementation shows that the general device can communicate over our overlay network using both IP versions through the proposed CYPHONIC adapter.
2023-02-17
Taib, Abidah Mat, Abdullah, Ariff As-Syadiqin, Ariffin, Muhammad Azizi Mohd, Ruslan, Rafiza.  2022.  Threats and Vulnerabilities Handling via Dual-stack Sandboxing Based on Security Mechanisms Model. 2022 IEEE 12th International Conference on Control System, Computing and Engineering (ICCSCE). :113–118.
To train new staff to be efficient and ready for the tasks assigned is vital. They must be equipped with knowledge and skills so that they can carry out their responsibility to ensure smooth daily working activities. As transitioning to IPv6 has taken place for more than a decade, it is understood that having a dual-stack network is common in any organization or enterprise. However, many Internet users may not realize the importance of IPv6 security due to a lack of awareness and knowledge of cyber and computer security. Therefore, this paper presents an approach to educating people by introducing a security mechanisms model that can be applied in handling security challenges via network sandboxing by setting up an isolated dual stack network testbed using GNS3 to perform network security analysis. The finding shows that applying security mechanisms such as access control lists (ACLs) and host-based firewalls can help counter the attacks. This proves that knowledge and skills to handle dual-stack security are crucial. In future, more kinds of attacks should be tested and also more types of security mechanisms can be applied on a dual-stack network to provide more information and to provide network engineers insights on how they can benefit from network sandboxing to sharpen their knowledge and skills.