Biblio
The paper presents a conceptual framework for security embedded task offloading requirements for IoT-Fog based future communication networks. The focus of the paper is to enumerate the need of embedded security requirements in this IoT-Fog paradigm including the middleware technologies in the overall architecture. Task offloading plays a significant role in the load balancing, energy and data management, security, reducing information processing and propagation latencies. The motivation behind introducing the embedded security is to meet the challenges of future smart networks including two main reasons namely; to improve the data protection and to minimize the internet disturbance and intrusiveness. We further discuss the middleware technologies such as cloudlets, mobile edge computing, micro datacenters, self-healing infrastructures and delay tolerant networks for security provision, optimized energy consumption and to reduce the latency. The paper introduces concepts of system virtualization and parallelism in IoT-Fog based systems and highlight the security features of the system. Some research opportunities and challenges are discussed to improve secure offloading from IoT into fog.
We propose an approach to enforce security in disruption- and delay-tolerant networks (DTNs) where long delays, high packet drop rates, unavailability of central trusted entity etc. make traditional approaches unfeasible. We use trust model based on subjective logic to continuously evaluate trustworthiness of security credentials issued in distributed manner by network participants to deal with absence of centralised trusted authorities.
We introduce $μ$DTNSec, the first fully-implemented security layer for Delay/Disruption-Tolerant Networks (DTN) on microcontrollers. It provides protection against eavesdropping and Man-in-the-Middle attacks that are especially easy in these networks. Following the Store-Carry-Forward principle of DTNs, an attacker can simply place itself on the route between source and destination. Our design consists of asymmetric encryption and signatures with Elliptic Curve Cryptography and hardware-backed symmetric encryption with the Advanced Encryption Standard. $μ$DTNSec has been fully implemented as an extension to $μ$DTN on Contiki OS and is based on the Bundle Protocol specification. Our performance evaluation shows that the choice of the curve (secp128r1, secp192r1, secp256r1) dominates the influence of the payload size. We also provide energy measurements for all operations to show the feasibility of our security layer on energy-constrained devices.
Opportunistic Networks are delay-tolerant mobile networks with intermittent node contacts in which data is transferred with the store-carry-forward principle. Owners of smartphones and smart objects form such networks due to their social behaviour. Opportunistic Networking can be used in remote areas with no access to the Internet, to establish communication after disasters, in emergency situations or to bypass censorship, but also in parallel to familiar networking. In this work, we create a mobile network application that connects Android devices over Wi-Fi, offers identification and encryption, and gathers information for routing in the network. The network application is constructed in such a way that third party applications can use the network application as network layer to send and receive data packets. We create secure and reliable connections while maintaining a high transmission speed, and with the gathered information about the network we offer knowledge for state of the art routing protocols. We conduct tests on connectivity, transmission range and speed, battery life and encryption speed and show a proof of concept for routing in the network.
The delay-tolerant-network (DTN) model is becoming a viable communication alternative to the traditional infrastructural model for modern mobile consumer electronics equipped with short-range communication technologies such as Bluetooth, NFC, and Wi-Fi Direct. Proximity malware is a class of malware that exploits the opportunistic contacts and distributed nature of DTNs for propagation. Behavioral characterization of malware is an effective alternative to pattern matching in detecting malware, especially when dealing with polymorphic or obfuscated malware. In this paper, we first propose a general behavioral characterization of proximity malware which based on naive Bayesian model, which has been successfully applied in non-DTN settings such as filtering email spams and detecting botnets. We identify two unique challenges for extending Bayesian malware detection to DTNs ("insufficient evidence versus evidence collection risk" and "filtering false evidence sequentially and distributedly"), and propose a simple yet effective method, look ahead, to address the challenges. Furthermore, we propose two extensions to look ahead, dogmatic filtering, and adaptive look ahead, to address the challenge of "malicious nodes sharing false evidence." Real mobile network traces are used to verify the effectiveness of the proposed methods.
The hardware and low-level software in many mobile devices are capable of mobile-to-mobile communication, including ad-hoc 802.11, Bluetooth, and cognitive radios. We have started to leverage this capability to provide interpersonal communication both over infrastructure networks (the Internet), and over ad-hoc and delay-tolerant networks composed of the mobile devices themselves. This network is decentralized in the sense that it can function without any infrastructure, but does take advantage of infrastructure connections when available. All interpersonal communication is encrypted and authenticated so packets may be carried by devices belonging to untrusted others. The decentralized model of security builds a flexible trust network on top of the social network of communicating individuals. This social network can be used to prioritize packets to or from individuals closely related by the social network. Other packets are prioritized to favor packets likely to consume fewer network resources. Each device also has a policy that determines how many packets may be forwarded, with the goal of providing useful interpersonal communications using at most 1% of any given resource on mobile devices. One challenge in a fully decentralized network is routing. Our design uses Rendezvous Points (RPs) and Distributed Hash Tables (DHTs) for delivery over infrastructure networks, and hop-limited broadcast and Delay Tolerant Networking (DTN) within the wireless ad-hoc network.