Visible to the public Biblio

Filters: Keyword is Networking Protocol  [Clear All Filters]
2018-03-19
Jemel, M., Msahli, M., Serhrouchni, A..  2017.  Towards an Efficient File Synchronization between Digital Safes. 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA). :136–143.
One of the main concerns of Cloud storage solutions is to offer the availability to the end user. Thus, addressing the mobility needs and device's variety has emerged as a major challenge. At first, data should be synchronized automatically and continuously when the user moves from one equipment to another. Secondly, the Cloud service should offer to the owner the possibility to share data with specific users. The paper's goal is to develop a secure framework that ensures file synchronization with high quality and minimal resource consumption. As a first step towards this goal, we propose the SyncDS protocol with its associated architecture. The synchronization protocol efficiency raises through the choice of the used networking protocol as well as the strategy of changes detection between two versions of file systems located in different devices. Our experiment results show that adopting the Hierarchical Hash Tree to detect the changes between two file systems and adopting the WebSocket protocol for the data exchanges improve the efficiency of the synchronization protocol.
2015-05-06
Biagioni, E..  2014.  Ubiquitous Interpersonal Communication over Ad-hoc Networks and the Internet. System Sciences (HICSS), 2014 47th Hawaii International Conference on. :5144-5153.

The hardware and low-level software in many mobile devices are capable of mobile-to-mobile communication, including ad-hoc 802.11, Bluetooth, and cognitive radios. We have started to leverage this capability to provide interpersonal communication both over infrastructure networks (the Internet), and over ad-hoc and delay-tolerant networks composed of the mobile devices themselves. This network is decentralized in the sense that it can function without any infrastructure, but does take advantage of infrastructure connections when available. All interpersonal communication is encrypted and authenticated so packets may be carried by devices belonging to untrusted others. The decentralized model of security builds a flexible trust network on top of the social network of communicating individuals. This social network can be used to prioritize packets to or from individuals closely related by the social network. Other packets are prioritized to favor packets likely to consume fewer network resources. Each device also has a policy that determines how many packets may be forwarded, with the goal of providing useful interpersonal communications using at most 1% of any given resource on mobile devices. One challenge in a fully decentralized network is routing. Our design uses Rendezvous Points (RPs) and Distributed Hash Tables (DHTs) for delivery over infrastructure networks, and hop-limited broadcast and Delay Tolerant Networking (DTN) within the wireless ad-hoc network.