Biblio
Internet of Things (IoT) stack models differ in their architecture, applications and needs. Hence, there are different approaches to apply IoT; for instance, it can be based on traditional data center or based on cloud computing. In fact, Cloud-based IoT is gaining more popularity due to its high scalability and cost effectiveness; hence, it is becoming the norm. However, Cloud is usually located far from the IoT devices and some recent research suggests using Fog-Based IoT by using a nearby light-weight middleware to bridge the gap and to provide the essential support and communication between devices, sensors, receptors and the servers. Therefore, Fog reduces centrality and provides local processing for faster analysis, especially for the time-sensitive applications. Thus, processing is done faster, giving the system flexibility for faster response time. Fog-Based Internet of Things security architecture should be suitable to the environment and provide the necessary measures to improve all security aspects with respect to the available resources and within performance constraints. In this work, we discuss some of these challenges, analyze performance of Fog based IoT and propose a security scheme based on MQTT protocol. Moreover, we present a discussion on security-performance tradeoffs.
Within few years, Cloud computing has emerged as the most promising IT business model. Thanks to its various technical and financial advantages, Cloud computing continues to convince every day new users coming from scientific and industrial sectors. To satisfy the various users' requirements, Cloud providers must maximize the performance of their IT resources to ensure the best service at the lowest cost. The performance optimization efforts in the Cloud can be achieved at different levels and aspects. In the present paper, we propose to introduce a fuzzy logic process in scheduling strategy for public Cloud in order to improve the response time, processing time and total cost. In fact, fuzzy logic has proven his ability to solve the problem of optimization in several fields such as data mining, image processing, networking and much more.
Recently, there has been a pronounced increase of interest in the field of renewable energy. In this area power inverters are crucial building blocks in a segment of energy converters, since they change direct current (DC) to alternating current (AC). Grid connected power inverters should operate in synchronism with the grid voltage. In this paper, the structure of a power system based on adaptive filtering is described. The main purpose of the adaptive filter is to adapt the output signal of the inverter to the corresponding load and/or grid signal. By involving adaptive filtering the response time decreases and quality of power delivery to the load or grid increases. A comparative analysis which relates to power system operation without and with adaptive filtering is given. In addition, the impact of variable impedance of load on quality of delivered power is considered. Results which relates to total harmonic distortion (THD) factor are obtained by Matlab/Simulink software.