Visible to the public Biblio

Filters: Keyword is GPS data  [Clear All Filters]
2020-06-19
Chowdhury, Abdullahi, Karmakar, Gour, Kamruzzaman, Joarder.  2019.  Trusted Autonomous Vehicle: Measuring Trust using On-Board Unit Data. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :787—792.

Vehicular Ad-hoc Networks (VANETs) play an essential role in ensuring safe, reliable and faster transportation with the help of an Intelligent Transportation system. The trustworthiness of vehicles in VANETs is extremely important to ensure the authenticity of messages and traffic information transmitted in extremely dynamic topographical conditions where vehicles move at high speed. False or misleading information may cause substantial traffic congestions, road accidents and may even cost lives. Many approaches exist in literature to measure the trustworthiness of GPS data and messages of an Autonomous Vehicle (AV). To the best of our knowledge, they have not considered the trustworthiness of other On-Board Unit (OBU) components of an AV, along with GPS data and transmitted messages, though they have a substantial relevance in overall vehicle trust measurement. In this paper, we introduce a novel model to measure the overall trustworthiness of an AV considering four different OBU components additionally. The performance of the proposed method is evaluated with a traffic simulation model developed by Simulation of Urban Mobility (SUMO) using realistic traffic data and considering different levels of uncertainty.

2017-12-28
Henretty, T., Baskaran, M., Ezick, J., Bruns-Smith, D., Simon, T. A..  2017.  A quantitative and qualitative analysis of tensor decompositions on spatiotemporal data. 2017 IEEE High Performance Extreme Computing Conference (HPEC). :1–7.

Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few (\textbackslashtextless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- \textbackslashtextbar\textbackslashtextbar

2017-11-27
Hong, M. Q., Wang, P. Y., Zhao, W. B..  2016.  Homomorphic Encryption Scheme Based on Elliptic Curve Cryptography for Privacy Protection of Cloud Computing. 2016 IEEE 2nd International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing (HPSC), and IEEE International Conference on Intelligent Data and Security (IDS). :152–157.

Cloud computing is becoming the main computing model in the future due to its advantages such as high resource utilization rate and save high cost of performance. The public environments is become necessary to secure their storage and transmission against possible attacks such as known-plain-text attack and semantic security. How to ensure the data security and the privacy preserving, however, becomes a huge obstacle to its development. The traditional way to solve Secure Multiparty Computation (SMC) problem is using Trusted Third Party (TTP), however, TTPs are particularly hard to achieve and compute complexity. To protect user's privacy data, the encrypted outsourcing data are generally stored and processed in cloud computing by applying homomorphic encryption. According to above situation, we propose Elliptic Curve Cryptography (ECC) based homomorphic encryption scheme for SMC problem that is dramatically reduced computation and communication cost. It shows that the scheme has advantages in energy consumption, communication consumption and privacy protection through the comparison experiment between ECC based homomorphic encryption and RSA&Paillier encryption algorithm. Further evidence, the scheme of homomorphic encryption scheme based on ECC is applied to the calculation of GPS data of the earthquake and prove it is proved that the scheme is feasible, excellent encryption effect and high security.

2015-05-06
Tong Liu, Qian Xu, Yuejun Li.  2014.  Adaptive filtering design for in-motion alignment of INS. Control and Decision Conference (2014 CCDC), The 26th Chinese. :2669-2674.

Misalignment angles estimation of strapdown inertial navigation system (INS) using global positioning system (GPS) data is highly affected by measurement noises, especially with noises displaying time varying statistical properties. Hence, adaptive filtering approach is recommended for the purpose of improving the accuracy of in-motion alignment. In this paper, a simplified form of Celso's adaptive stochastic filtering is derived and applied to estimate both the INS error states and measurement noise statistics. To detect and bound the influence of outliers in INS/GPS integration, outlier detection based on jerk tracking model is also proposed. The accuracy and validity of the proposed algorithm is tested through ground based navigation experiments.