Visible to the public Biblio

Filters: Keyword is telecommunication network management  [Clear All Filters]
2021-03-04
Carrozzo, G., Siddiqui, M. S., Betzler, A., Bonnet, J., Perez, G. M., Ramos, A., Subramanya, T..  2020.  AI-driven Zero-touch Operations, Security and Trust in Multi-operator 5G Networks: a Conceptual Architecture. 2020 European Conference on Networks and Communications (EuCNC). :254—258.
The 5G network solutions currently standardised and deployed do not yet enable the full potential of pervasive networking and computing envisioned in 5G initial visions: network services and slices with different QoS profiles do not span multiple operators; security, trust and automation is limited. The evolution of 5G towards a truly production-level stage needs to heavily rely on automated end-to-end network operations, use of distributed Artificial Intelligence (AI) for cognitive network orchestration and management and minimal manual interventions (zero-touch automation). All these elements are key to implement highly pervasive network infrastructures. Moreover, Distributed Ledger Technologies (DLT) can be adopted to implement distributed security and trust through Smart Contracts among multiple non-trusted parties. In this paper, we propose an initial concept of a zero-touch security and trust architecture for ubiquitous computing and connectivity in 5G networks. Our architecture aims at cross-domain security & trust orchestration mechanisms by coupling DLTs with AI-driven operations and service lifecycle automation in multi-tenant and multi-stakeholder environments. Three representative use cases are identified through which we will validate the work which will be validated in the test facilities at 5GBarcelona and 5TONIC/Madrid.
2021-01-11
Khandait, P., Hubballi, N., Mazumdar, B..  2020.  Efficient Keyword Matching for Deep Packet Inspection based Network Traffic Classification. 2020 International Conference on COMmunication Systems NETworkS (COMSNETS). :567–570.
Network traffic classification has a range of applications in network management including QoS and security monitoring. Deep Packet Inspection (DPI) is one of the effective method used for traffic classification. DPI is computationally expensive operation involving string matching between payload and application signatures. Existing traffic classification techniques perform multiple scans of payload to classify the application flows - first scan to extract the words and the second scan to match the words with application signatures. In this paper we propose an approach which can classify network flows with single scan of flow payloads using a heuristic method to achieve a sub-linear search complexity. The idea is to scan few initial bytes of payload and determine potential application signature(s) for subsequent signature matching. We perform experiments with a large dataset containing 171873 network flows and show that it has a good classification accuracy of 98%.
2020-09-21
Manikandan, G., Suresh, K., Annabel, L. Sherly Puspha.  2019.  Performance Analysis of Cluster based Secured Key Management Schemes in WSN. 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT). :944–948.
Wireless Sensor Networks (WSNs) utilizes many dedicated sensors for large scale networks in order to record and monitor the conditions over the environment. Cluster-Based Wireless Sensor Networks (CBWSNs) elucidates essential challenges like routing, load balancing, and lifetime of a network and so on. Conversely, security relies a major challenge in CBWSNs by limiting its resources or not forwarding the data to the other clusters. Wireless Sensor Networks utilize different security methods to offer secure information transmission. Encryption of information records transferred into various organizations thus utilizing a very few systems are the normal practices to encourage high information security. For the most part, such encoded data and also the recovery of unique data depend on symmetric or asymmetric key sets. Collectively with the evolution of security advances, unfruitful or unauthorized endeavors have been made by different illicit outsiders to snip the transmitted information and mystery keys deviously, bother the transmission procedure or misshape the transmitted information and keys. Sometimes, the limitations made in the correspondence channel, transmitting and receiving devices might weaken information security and discontinue a critical job to perform. Thus, in this paper we audit the current information security design and key management framework in WSN. Based on this audit and recent security holes, this paper recommends a plausible incorporated answer for secure transmission of information and mystery keys to address these confinements. Thus, consistent and secure clusters is required to guarantee appropriate working of CBWSNs.
2020-08-28
Ferreira, P.M.F.M., Orvalho, J.M., Boavida, F..  2005.  Large Scale Mobile and Pervasive Augmented Reality Games. EUROCON 2005 - The International Conference on "Computer as a Tool". 2:1775—1778.
Ubiquitous or pervasive computing is a new kind of computing, where specialized elements of hardware and software will have such high level of deployment that their use will be fully integrated with the environment. Augmented reality extends reality with virtual elements but tries to place the computer in a relatively unobtrusive, assistive role. To our knowledge, there is no specialized network middleware solution for large-scale mobile and pervasive augmented reality games. We present a work that focus on the creation of such network middleware for mobile and pervasive entertainment, applied to the area of large scale augmented reality games. In, this context, mechanisms are being studied, proposed and evaluated to deal with issues such as scalability, multimedia data heterogeneity, data distribution and replication, consistency, security, geospatial location and orientation, mobility, quality of service, management of networks and services, discovery, ad-hoc networking and dynamic configuration
2020-08-24
Sadasivarao, Abhinava, Bardhan, Sanjoy, Syed, Sharfuddin, Lu, Biao, Paraschis, Loukas.  2019.  Optonomic: Architecture for Secure Autonomic Optical Transport Networks. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :321–328.
We present a system architecture for autonomic operation, administration and maintenance of both the optical and digital layers within the integrated optical transport network infrastructure. This framework encompasses the end-to-end instrumentation: From equipment commissioning to automatic discovery and bring-up, to self-managed, self-(re)configuring optical transport layer. We leverage prevalent networking protocols to build an autonomic control plane for the optical network elements. Various aspects of security, a critical element for self-managed operations, are addressed. We conclude with a discussion on the interaction with SDN, and how autonomic functions can benefit from these capabilities, a brief survey of standardization activities and scope for future work.
2020-08-13
Jiang, Wei, Anton, Simon Duque, Dieter Schotten, Hans.  2019.  Intelligence Slicing: A Unified Framework to Integrate Artificial Intelligence into 5G Networks. 2019 12th IFIP Wireless and Mobile Networking Conference (WMNC). :227—232.
The fifth-generation and beyond mobile networks should support extremely high and diversified requirements from a wide variety of emerging applications. It is envisioned that more advanced radio transmission, resource allocation, and networking techniques are required to be developed. Fulfilling these tasks is challenging since network infrastructure becomes increasingly complicated and heterogeneous. One promising solution is to leverage the great potential of Artificial Intelligence (AI) technology, which has been explored to provide solutions ranging from channel prediction to autonomous network management, as well as network security. As of today, however, the state of the art of integrating AI into wireless networks is mainly limited to use a dedicated AI algorithm to tackle a specific problem. A unified framework that can make full use of AI capability to solve a wide variety of network problems is still an open issue. Hence, this paper will present the concept of intelligence slicing where an AI module is instantiated and deployed on demand. Intelligence slices are applied to conduct different intelligent tasks with the flexibility of accommodating arbitrary AI algorithms. Two example slices, i.e., neural network based channel prediction and anomaly detection based industrial network security, are illustrated to demonstrate this framework.
2020-06-01
Kapoor, Chavi.  2019.  Routing Table Management using Dynamic Information with Routing Around Connectivity Holes (RACH) for IoT Networks. 2019 International Conference on Automation, Computational and Technology Management (ICACTM). :174—177.

The internet of things (IoT) is the popular wireless network for data collection applications. The IoT networks are deployed in dense or sparse architectures, out of which the dense networks are vastly popular as these are capable of gathering the huge volumes of data. The collected data is analyzed using the historical or continuous analytical systems, which uses the back testing or time-series analytics to observe the desired patterns from the target data. The lost or bad interval data always carries the high probability to misguide the analysis reports. The data is lost due to a variety of reasons, out of which the most popular ones are associated with the node failures and connectivity holes, which occurs due to physical damage, software malfunctioning, blackhole/wormhole attacks, route poisoning, etc. In this paper, the work is carried on the new routing scheme for the IoTs to avoid the connectivity holes, which analyzes the activity of wireless nodes and takes the appropriate actions when required.

2020-04-03
Bello-Ogunu, Emmanuel, Shehab, Mohamed, Miazi, Nazmus Sakib.  2019.  Privacy Is The Best Policy: A Framework for BLE Beacon Privacy Management. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:823—832.
Bluetooth Low Energy (BLE) beacons are an emerging type of technology in the Internet-of-Things (IoT) realm, which use BLE signals to broadcast a unique identifier that is detected by a compatible device to determine the location of nearby users. Beacons can be used to provide a tailored user experience with each encounter, yet can also constitute an invasion of privacy, due to their covertness and ability to track user behavior. Therefore, we hypothesize that user-driven privacy policy configuration is key to enabling effective and trustworthy privacy management during beacon encounters. We developed a framework for beacon privacy management that provides a policy configuration platform. Through an empirical analysis with 90 users, we evaluated this framework through a proof-of-concept app called Beacon Privacy Manager (BPM), which focused on the user experience of such a tool. Using BPM, we provided users with the ability to create privacy policies for beacons, testing different configuration schemes to refine the framework and then offer recommendations for future research.
2020-01-27
Zhi, Li, Yanzhu, Liu, Di, Liu, Nan, Zhang, Xueying, Ding, Yuanyuan, Liu.  2019.  A Hypergraph-Based Key Management Scheme for Smart Charging Networking. 2019 Chinese Control And Decision Conference (CCDC). :4904–4908.

In this article, to deal with data security requirements of electric vehicle users, a key management scheme for smart charging has been studied. According to the characteristics of the network, three elements and a two-subnetwork model between the charging and the electric vehicle users have been designed. Based on the hypergraph theory, the hypergraph structure of the smart charging network is proposed. And the key management scheme SCHKM is designed to satisfy the operational and security requirements of this structure. The efficiency of SCHKM scheme is analyzed from the cost experiment of key generation and key storage. The experimental results show that compared with the LKH, OFT and GKMP, the proposed key management scheme has obvious advantages in multi-user and key generation cost.

2020-01-21
Liang, Xiao, Chen, Heyao.  2019.  A SDN-Based Hierarchical Authentication Mechanism for IPv6 Address. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :225–225.
The emergence of IPv6 protocol extends the address pool, but it also exposes all the Internet-connected devices to danger. Currently, there are some traditional schemes on security management of network addresses, such as prevention, traceability and encryption authentication, but few studies work on IPv6 protocol. In this paper, we propose a hierarchical authentication mechanism for the IPv6 source address with the technology of software defined network (SDN). This mechanism combines the authentication of three parts, namely the access network, the intra-domain and the inter-domain. And it can provide a fine-grained security protection for the devices using IPv6 addresses.
2019-12-02
Tseng, Yuchia, Nait-Abdesselam, Farid, Khokhar, Ashfaq.  2018.  SENAD: Securing Network Application Deployment in Software Defined Networks. 2018 IEEE International Conference on Communications (ICC). :1–6.
The Software Defined Networks (SDN) paradigm, often referred to as a radical new idea in networking, promises to dramatically simplify network management by enabling innovation through network programmability. However, notable security issues, such as app-to-control threats, remain a significant concern that impedes SDN from being widely adopted. To cope with those app-to-control threats, this paper proposes a solution to securely deploy valid network applications while protecting the SDN controller against the injection of the malicious application. This problem is mitigated by proposing a novel SDN architecture, dubbed SENAD, which splits the well-known SDN controller into: (1) a data plane controller (DPC), and (2) an application plane controller (APC), to secure this latter by design. The role of the DPC is dedicated for interpreting the network rules into OpenFlow entries and maintaining the communication with the data plane. The role of the APC, however, is to provide a secured runtime for deploying the network applications, including authentication, access control, resource isolation, control, and monitoring applications. We show that this approach can easily shield against any deny of service, caused for instance by the resource exhaustion attack or the malicious command injection, that is caused by the co-existence of a malicious application on the controller's runtime. The evaluation of our architecture shows that the packet\_in messages take less than 5 ms to be delivered from the data plane to the application plane on the long range.
2019-01-16
Popalyar, F., Yaqini, A..  2018.  A trust model based on evidence-based subjective logic for securing wireless mesh networks. 2018 21st Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN). :1–5.
Wireless Mesh Network (WMN) is a promising networking technology, which is cost effective, robust, easily maintainable and provides reliable service coverage. WMNs do not rely on a centralized administration and have a distributed nature in which nodes can participate in routing packets. Such design and structure makes WMNs vulnerable to a variety of security threats. Therefore, to ensure secure route discovery in WMNs, we propose a trust model which is based on Evidence- Based Subjective Logic (EBSL). The proposed trust model computes trust values of individual nodes and manages node reputation. We use watchdog detection mechanism to monitor selfish behavior in the network. A node's final trust value is calculated by aggregating the nodes direct and recommendation trust information. The proposed trust model ensures secure routing of packets by avoiding paths with untrusted nodes. The trust model is able to detect selfish behavior such as black-hole and gray-hole attacks.
2018-11-19
Cebe, M., Akkaya, K..  2017.  Efficient Management of Certificate Revocation Lists in Smart Grid Advanced Metering Infrastructure. 2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). :313–317.

Advanced Metering Infrastructure (AMI) forms a communication network for the collection of power data from smart meters in Smart Grid. As the communication within an AMI needs to be secure, key management becomes an issue due to overhead and limited resources. While using public-keys eliminate some of the overhead of key management, there is still challenges regarding certificates that store and certify the public-keys. In particular, distribution and storage of certificate revocation list (CRL) is major a challenge due to cost of distribution and storage in AMI networks which typically consist of wireless multi-hop networks. Motivated by the need of keeping the CRL distribution and storage cost effective and scalable, in this paper, we present a distributed CRL management model utilizing the idea of distributed hash trees (DHTs) from peer-to-peer (P2P) networks. The basic idea is to share the burden of storage of CRLs among all the smart meters by exploiting the meshing capability of the smart meters among each other. Thus, using DHTs not only reduces the space requirements for CRLs but also makes the CRL updates more convenient. We implemented this structure on ns-3 using IEEE 802.11s mesh standard as a model for AMI and demonstrated its superior performance with respect to traditional methods of CRL management through extensive simulations.

2018-07-06
Du, Xiaojiang.  2004.  Using k-nearest neighbor method to identify poison message failure. IEEE Global Telecommunications Conference, 2004. GLOBECOM '04. 4:2113–2117Vol.4.

Poison message failure is a mechanism that has been responsible for large scale failures in both telecommunications and IP networks. The poison message failure can propagate in the network and cause an unstable network. We apply a machine learning, data mining technique in the network fault management area. We use the k-nearest neighbor method to identity the poison message failure. We also propose a "probabilistic" k-nearest neighbor method which outputs a probability distribution about the poison message. Through extensive simulations, we show that the k-nearest neighbor method is very effective in identifying the responsible message type.

2018-06-20
Singh, E. P..  2017.  Re-joining of authorized nodes in MANETs using EGSR scheme and detection of internal attacks using 2ACK scheme. 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON). :306–311.

One of the specially designated versatile networks, commonly referred to as MANET, performs on the basics that each and every one grouping in nodes totally operate in self-sorting out limits. In any case, performing in a group capacity maximizes quality and different sources. Mobile ad hoc network is a wireless infrastructureless network. Due to its unique features, various challenges are faced under MANET when the role of routing and its security comes into play. The review has demonstrated that the impact of failures during the information transmission has not been considered in the existing research. The majority of strategies for ad hoc networks just determines the path and transmits the data which prompts to packet drop in case of failures, thus resulting in low dependability. The majority of the existing research has neglected the use of the rejoining processing of the root nodes network. Most of the existing techniques are based on detecting the failures but the use of path re-routing has also been neglected in the existing methods. Here, we have proposed a method of path re-routing for managing the authorized nodes and managing the keys for group in ad hoc environment. Securing Schemes, named as 2ACK and the EGSR schemes have been proposed, which may be truly interacted to most of the routing protocol. The path re-routing has the ability to reduce the ratio of dropped packets. The comparative analysis has clearly shown that the proposed technique outperforms the available techniques in terms of various quality metrics.

2018-06-11
Balaji, V. S., Reebha, S. A. A. B., Saravanan, D..  2017.  Audit-based efficient accountability for node misbehavior in wireless sensor network. 2017 International Conference on IoT and Application (ICIOT). :1–10.

Wireless sensor network operate on the basic underlying assumption that all participating nodes fully collaborate in self-organizing functions. However, performing network functions consumes energy and other resources. Therefore, some network nodes may decide against cooperating with others. Node misbehavior due to selfish or malicious reasons or faulty nodes can significantly degrade the performance of mobile ad-hoc networks. To cope with misbehavior in such self-organized networks, nodes need to be able to automatically adapt their strategy to changing levels of cooperation. The problem of identifying and isolating misbehaving nodes that refuses to forward packets in multi-hop ad hoc networks. a comprehensive system called Audit-based Misbehavior Detection (AMD) that effectively and efficiently isolates both continuous and selective packet droppers. The AMD system integrates reputation management, trustworthy route discovery, and identification of misbehaving nodes based on behavioral audits. AMD evaluates node behavior on a per-packet basis, without employing energy-expensive overhearing techniques or intensive acknowledgment schemes. AMD can detect selective dropping attacks even if end-to-end traffic is encrypted and can be applied to multi-channel networks.

2018-05-09
Wang, Z., Hu, H., Zhang, C..  2017.  On achieving SDN controller diversity for improved network security using coloring algorithm. 2017 3rd IEEE International Conference on Computer and Communications (ICCC). :1270–1275.

The SDN (Software Defined Networking) paradigm rings flexibility to the network management and is an enabler to offer huge opportunities for network programmability. And, to solve the scalability issue raised by the centralized architecture of SDN, multi-controllers deployment (or distributed controllers system) is envisioned. In this paper, we focus on increasing the diversity of SDN control plane so as to enhance the network security. Our goal is to limit the ability of a malicious controller to compromise its neighboring controllers, and by extension, the rest of the controllers. We investigate a heterogeneous Susceptible-Infectious-Susceptible (SIS) epidemic model to evaluate the security performance and propose a coloring algorithm to increase the diversity based on community detection. And the simulation results demonstrate that our algorithm can reduce infection rate in control plane and our work shows that diversity must be introduced in network design for network security.

2018-02-14
Raju, S., Boddepalli, S., Gampa, S., Yan, Q., Deogun, J. S..  2017.  Identity management using blockchain for cognitive cellular networks. 2017 IEEE International Conference on Communications (ICC). :1–6.
Cloud-centric cognitive cellular networks utilize dynamic spectrum access and opportunistic network access technologies as a means to mitigate spectrum crunch and network demand. However, furnishing a carrier with personally identifiable information for user setup increases the risk of profiling in cognitive cellular networks, wherein users seek secondary access at various times with multiple carriers. Moreover, network access provisioning - assertion, authentication, authorization, and accounting - implemented in conventional cellular networks is inadequate in the cognitive space, as it is neither spontaneous nor scalable. In this paper, we propose a privacy-enhancing user identity management system using blockchain technology which places due importance on both anonymity and attribution, and supports end-to-end management from user assertion to usage billing. The setup enables network access using pseudonymous identities, hindering the reconstruction of a subscriber's identity. Our test results indicate that this approach diminishes access provisioning duration by up to 4x, decreases network signaling traffic by almost 40%, and enables near real-time user billing that may lead to approximately 3x reduction in payments settlement time.
2018-02-06
Roth, J. D., Martin, J., Mayberry, T..  2017.  A Graph-Theoretic Approach to Virtual Access Point Correlation. 2017 IEEE Conference on Communications and Network Security (CNS). :1–9.

The wireless boundaries of networks are becoming increasingly important from a security standpoint as the proliferation of 802.11 WiFi technology increases. Concurrently, the complexity of 802.11 access point implementation is rapidly outpacing the standardization process. The result is that nascent wireless functionality management is left up to the individual provider's implementation, which creates new vulnerabilities in wireless networks. One such functional improvement to 802.11 is the virtual access point (VAP), a method of broadcasting logically separate networks from the same physical equipment. Network reconnaissance benefits from VAP identification, not only because network topology is a primary aim of such reconnaissance, but because the knowledge that a secure network and an insecure network are both being broadcast from the same physical equipment is tactically relevant information. In this work, we present a novel graph-theoretic approach to VAP identification which leverages a body of research concerned with establishing community structure. We apply our approach to both synthetic data and a large corpus of real-world data to demonstrate its efficacy. In most real-world cases, near-perfect blind identification is possible highlighting the effectiveness of our proposed VAP identification algorithm.

2017-03-29
Nisha, Dave, M..  2016.  Storage as a parameter for classifying dynamic key management schemes proposed for WSNs. 2016 International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT). :51–56.

Real world applications of Wireless Sensor Networks such as border control, healthcare monitoring and target tracking require secure communications. Thus, during WSN setup, one of the first requirements is to distribute the keys to the sensor nodes which can be later used for securing the messages exchanged between sensors. The key management schemes in WSN secure the communication between a pair or a group of nodes. However, the storage capacity of the sensor nodes is limited which makes storage requirement as an important parameter for the evaluation of key management schemes. This paper classifies the existing key management schemes proposed for WSNs into three categories: storage inefficient, storage efficient and highly storage efficient key management schemes.

2017-03-13
Kamoona, M., El-Sharkawy, M..  2016.  FlexiWi-Fi Security Manager Using Freescale Embedded System. 2015 2nd International Conference on Information Science and Security (ICISS). :1–4.

Among the current Wi-Fi two security models (Enterprise and Personal), while the Enterprise model (802.1X) offers an effective framework for authenticating and controlling the user traffic to a protected network, the Personal model (802.11) offers the cheapest and the easiest to setup solution. However, the drawback of the personal model implementation is that all access points and client radio NIC on the wireless LAN should use the same encryption key. A major underlying problem of the 802.11 standard is that the pre-shared keys are cumbersome to change. So if those keys are not updated frequently, unauthorized users with some resources and within a short timeframe can crack the key and breach the network security. The purpose of this paper is to propose and implement an effective method for the system administrator to manage the users connected to a router, update the keys and further distribute them for the trusted clients using the Freescale embedded system, Infrared and Bluetooth modules.

2015-05-06
Gandino, F., Montrucchio, B., Rebaudengo, M..  2014.  Key Management for Static Wireless Sensor Networks With Node Adding. Industrial Informatics, IEEE Transactions on. 10:1133-1143.

Wireless sensor networks offer benefits in several applications but are vulnerable to various security threats, such as eavesdropping and hardware tampering. In order to reach secure communications among nodes, many approaches employ symmetric encryption. Several key management schemes have been proposed in order to establish symmetric keys. The paper presents an innovative key management scheme called random seed distribution with transitory master key, which adopts the random distribution of secret material and a transitory master key used to generate pairwise keys. The proposed approach addresses the main drawbacks of the previous approaches based on these techniques. Moreover, it overperforms the state-of-the-art protocols by providing always a high security level.

Lalitha, T., Devi, A.J..  2014.  Security in Wireless Sensor Networks: Key Management Module in EECBKM. Computing and Communication Technologies (WCCCT), 2014 World Congress on. :306-308.

Wireless Sensor Networks (WSN) is vulnerable to node capture attacks in which an attacker can capture one or more sensor nodes and reveal all stored security information which enables him to compromise a part of the WSN communications. Due to large number of sensor nodes and lack of information about deployment and hardware capabilities of sensor node, key management in wireless sensor networks has become a complex task. Limited memory resources and energy constraints are the other issues of key management in WSN. Hence an efficient key management scheme is necessary which reduces the impact of node capture attacks and consume less energy. By simulation results, we show that our proposed technique efficiently increases packet delivery ratio with reduced energy consumption.

Abdallah, W., Boudriga, N., Daehee Kim, Sunshin An.  2014.  An efficient and scalable key management mechanism for wireless sensor networks. Advanced Communication Technology (ICACT), 2014 16th International Conference on. :687-692.

A major issue to secure wireless sensor networks is key distribution. Current key distribution schemes are not fully adapted to the tiny, low-cost, and fragile sensors with limited computation capability, reduced memory size, and battery-based power supply. This paper investigates the design of an efficient key distribution and management scheme for wireless sensor networks. The proposed scheme can ensure the generation and distribution of different encryption keys intended to secure individual and group communications. This is performed based on elliptic curve public key encryption using Diffie-Hellman like key exchange and secret sharing techniques that are applied at different levels of the network topology. This scheme is more efficient and less complex than existing approaches, due to the reduced communication and processing overheads required to accomplish key exchange. Furthermore, few keys with reduced sizes are managed in sensor nodes which optimizes memory usage, and enhances scalability to large size networks.

Ying Zhang, Ji Pengfei.  2014.  An efficient and hybrid key management for heterogeneous wireless sensor networks. Control and Decision Conference (2014 CCDC), The 26th Chinese. :1881-1885.

Key management is the core to ensure the communication security of wireless sensor network. How to establish efficient key management in wireless sensor networks (WSN) is a challenging problem for the constrained energy, memory, and computational capabilities of the sensor nodes. Previous research on sensor network security mainly considers homogeneous sensor networks with symmetric key cryptography. Recent researches have shown that using asymmetric key cryptography in heterogeneous sensor networks (HSN) can improve network performance, such as connectivity, resilience, etc. Considering the advantages and disadvantages of symmetric key cryptography and asymmetric key cryptography, the paper propose an efficient and hybrid key management method for heterogeneous wireless sensor network, cluster heads and base stations use public key encryption method based on elliptic curve cryptography (ECC), while using symmetric encryption method between adjacent nodes in the cluster. The analysis and simulation results show that the proposed key management method can provide better security, prefect scalability and connectivity with saving on storage space.