Visible to the public Biblio

Filters: Keyword is data forwarding  [Clear All Filters]
2021-02-22
Nour, B., Khelifi, H., Hussain, R., Moungla, H., Bouk, S. H..  2020.  A Collaborative Multi-Metric Interface Ranking Scheme for Named Data Networks. 2020 International Wireless Communications and Mobile Computing (IWCMC). :2088–2093.
Named Data Networking (NDN) uses the content name to enable content sharing in a network using Interest and Data messages. In essence, NDN supports communication through multiple interfaces, therefore, it is imperative to think of the interface that better meets the communication requirements of the application. The current interface ranking is based on single static metric such as minimum number of hops, maximum satisfaction rate, or minimum network delay. However, this ranking may adversely affect the network performance. To fill the gap, in this paper, we propose a new multi-metric robust interface ranking scheme that combines multiple metrics with different objective functions. Furthermore, we also introduce different forwarding modes to handle the forwarding decision according to the available ranked interfaces. Extensive simulation experiments demonstrate that the proposed scheme selects the best and suitable forwarding interface to deliver content.
2021-02-08
Kumar, B. M., Sri, B. R. S., Katamaraju, G. M. S. A., Rani, P., Harinadh, N., Saibabu, C..  2020.  File Encryption and Decryption Using DNA Technology. 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). :382–385.
Cryptography is the method of transforming the original texted message into an unknown form and in reverse also. It is the process of hiding and forwarding the data in an appropriate form so that only authorized persons can know and can process it. Cryptographic process secures the data from hijacking or transmutation, it is mainly used for users data security. This paper justifies the encryption and decryption using DNA(Deoxyribo Nucleic Acid) sequence. This process includes several intermediate steps, the perception of binary-coded form and generating of arbitrary keys is used to encrypt the message. A common key should be established between the sender and receiver for encryption and decryption process. The common key provides more security to the sequence. In this paper, both the process of binary-coded form and generating of arbitrary keys are used to encrypt the message. It is widely used in an institution and by every individual to hide their data from the muggers and hijackers and provides the data securely, and confidentially over the transmission of information.
2015-05-06
Zhuo Lu, Wenye Wang, Wang, C..  2014.  How can botnets cause storms? Understanding the evolution and impact of mobile botnets INFOCOM, 2014 Proceedings IEEE. :1501-1509.

A botnet in mobile networks is a collection of compromised nodes due to mobile malware, which are able to perform coordinated attacks. Different from Internet botnets, mobile botnets do not need to propagate using centralized infrastructures, but can keep compromising vulnerable nodes in close proximity and evolving organically via data forwarding. Such a distributed mechanism relies heavily on node mobility as well as wireless links, therefore breaks down the underlying premise in existing epidemic modeling for Internet botnets. In this paper, we adopt a stochastic approach to study the evolution and impact of mobile botnets. We find that node mobility can be a trigger to botnet propagation storms: the average size (i.e., number of compromised nodes) of a botnet increases quadratically over time if the mobility range that each node can reach exceeds a threshold; otherwise, the botnet can only contaminate a limited number of nodes with average size always bounded above. This also reveals that mobile botnets can propagate at the fastest rate of quadratic growth in size, which is substantially slower than the exponential growth of Internet botnets. To measure the denial-of-service impact of a mobile botnet, we define a new metric, called last chipper time, which is the last time that service requests, even partially, can still be processed on time as the botnet keeps propagating and launching attacks. The last chipper time is identified to decrease at most on the order of 1/√B, where B is the network bandwidth. This result reveals that although increasing network bandwidth can help with mobile services; at the same time, it can indeed escalate the risk for services being disrupted by mobile botnets.