Biblio
Human-robot trust is crucial to successful human-robot interaction. We conducted a study with 798 participants distributed across 32 conditions using four dimensions of human-robot trust (reliable, capable, ethical, sincere) identified by the Multi-Dimensional-Measure of Trust (MDMT). We tested whether these dimensions can differentially capture gains and losses in human-robot trust across robot roles and contexts. Using a 4 scenario × 4 trust dimension × 2 change direction between-subjects design, we found the behavior change manipulation effective for each of the four subscales. However, the pattern of results best supported a two-dimensional conception of trust, with reliable-capable and ethical-sincere as the major constituents.
In this research paper author surveys the need of data protection from intelligent systems in the private and public sectors. For this, she identifies that the Smart Information Security Intel processes needs to be the suggestive key policy for both sectors of governance either public or private. The information is very sensitive for any organization. When the government offices are concerned, information needs to be abstracted and encapsulated so that there is no information stealing. For this purposes, the art of skill set and new optimized technology needs to be stationed. Author identifies that digital bar-coded air port like security using conveyor belts and digital bar-coded conveyor boxes to scan switched ON articles like internet of things needs to be placed. As otherwise, there can potentially be data, articles or information stealing from the operational sites where access is unauthorized. Such activities shall need to be scrutinized, minutely. The biometric such as fingerprints, iris, voice and face recognition pattern updates in the virtual data tables must be taken to keep data entry-exit log up to-date. The information technicians of the sentinel systems must help catch the anomalies in the professional working time in private and public sectors if there is red flag as indicator. The author in this research paper shall discuss in detail what we shall station, how we shall station and what all measures we might need to undertake to safeguard the stealing of sensitive information from the organizations like administration buildings, government buildings, educational schools, hospitals, courts, private buildings, banks and all other offices nation-wide. The TO-BE new processes shall make the AS-IS office system more information secured, data protected and personnel security stronger.
The increasing integration of information and communication technologies has undoubtedly boosted the efficiency of Critical Infrastructures (CI). However, the first wave of IoT devices, together with the management of enormous amount of data generated by modern CIs, has created serious architectural issues. While the emerging Fog and Multi-Access Edge Computing (FMEC) paradigms can provide a viable solution, they also bring inherent security issues, that can cause dire consequences in the context of CIs. In this paper, we analyze the applications of FMEC solutions in the context of CIs, with a specific focus on related security issues and threats for the specific while broad scenarios: a smart airport, a smart port, and a smart offshore oil and gas extraction field. Leveraging these scenarios, a set of general security requirements for FMEC is derived, together with crucial research challenges whose further investigation is cornerstone for a successful adoption of FMEC in CIs.
Airports are at the forefront of technological innovation, mainly due to the fact that the number of air travel passengers is exponentially increasing every year. As a result, airports enhance infrastructure's intelligence and evolve as smart facilities to support growth, by offering a pleasurable travel experience, which plays a vital role in increasing revenue of aviation sector. New challenges are coming up, which aviation has to deal and adapt, such as the integration of Industrial IoT in airport facilities and the increased use of Bring Your Own Device from travelers and employees. Cybersecurity is becoming a key enabler for safety, which is paramount in the aviation context. Smart airports strive to provide optimal services in a reliable and sustainable manner, by working around the domains of growth, efficiency, safety andsecurity. This paper researches the implementation rate of cybersecurity measures and best practices to improve airports cyber resilience. With the aim to enhance operational practices anddevelop robust cybersecurity governance in smart airports, we analyze security gaps in different areas including technical, organizational practices and policies.
One of the effective ways to improve the quality of airport security (AS) is to improve the quality of management of the state of the system for countering acts of unlawful interference by intruders into the airports (SCAUI), which is a set of AS employees, technical systems and devices used for passenger screening, luggage, other operational procedures, as well as to protect the restricted areas of the airports. Proactive control of the SCAUI state includes ongoing conducting assessment of airport AS quality by experts, identification of SCAUI elements (functional state of AS employees, characteristics of technical systems and devices) that have a predominant influence on AS, and improvement of their performance. This article presents principles of the model and the method for conducting expert quality assessment of airport AS, whose application allows to increase the efficiency and quality of AS assessment by experts, and, consequently, the quality of SCAUI state control.
In this paper, we study the security and system congestion in a risk-based checkpoint screening system with two kinds of inspection queues, named as Selectee Lanes and Normal Lanes. Based on the assessed threat value, the arrival crossing the security checkpoints is classified as either a selectee or a non-selectee. The Selectee Lanes with enhanced scrutiny are used to check selectees, while Normal Lanes are used to check non-selectees. The goal of the proposed modelling framework is to minimize the system congestion under the constraints of total security and limited budget. The system congestion of the checkpoint screening system is determined through a steady-state analysis of multi-server queueing models. By solving an optimization model, we can determine the optimal threshold for differentiating the arrivals, and determine the optimal number of security devices for each type of inspection queues. The analysis conducted in this study contributes managerial insights for understanding the operation and system performance of such risk-based checkpoint screening systems.
In order to enhance the supply chain security at airports, the German federal ministry of education and research has initiated the project ESECLOG (enhanced security in the air cargo chain) which has the goal to improve the threat detection accuracy using one-sided access methods. In this paper, we present a new X-ray backscatter technology for non-intrusive imaging of suspicious objects (mainly low-Z explosives) in luggage's and parcels with only a single-sided access. A key element in this technology is the X-ray backscatter camera embedded with a special twisted-slit collimator. The developed technology has efficiently resolved the problem related to the imaging of complex interior of the object by fixing source and object positions and changing only the scanning direction of the X-ray backscatter camera. Experiments were carried out on luggages and parcels packed with mock-up dangerous materials including liquid and solid explosive simulants. In addition, the quality of the X-ray backscatter image was enhanced by employing high-resolution digital detector arrays. Experimental results are discussed and the efficiency of the present technique to detect suspicious objects in luggages and parcels is demonstrated. At the end, important applications of the proposed backscatter imaging technology to the aviation security are presented.
Attacks on airport information network services in the form of Denial of Service (DoS), Distributed DoS (DDoS), and hijacking are the most effective schemes mostly explored by cyber terrorists in the aviation industry running Mission Critical Services (MCSs). This work presents a case for Airport Information Resource Management Systems (AIRMS) which is a cloud based platform proposed for the Nigerian aviation industry. Granting that AIRMS is susceptible to DoS attacks, there is need to develop a robust counter security network model aimed at pre-empting such attacks and subsequently mitigating the vulnerability in such networks. Existing works in literature regarding cyber security DoS and other schemes have not explored embedded Stateful Packet Inspection (SPI) based on OpenFlow Application Centric Infrastructure (OACI) for securing critical network assets. As such, SPI-OACI was proposed to address the challenge of Vulnerability Bandwidth Depletion DDoS Attacks (VBDDA). A characterization of the Cisco 9000 router firewall as an embedded network device with support for Virtual DDoS protection was carried out in the AIRMS threat mitigation design. Afterwards, the mitigation procedure and the initial phase of the design with Riverbed modeler software were realized. For the security Quality of Service (QoS) profiling, the system response metrics (i.e. SPI-OACI delay, throughput and utilization) in cloud based network were analyzed only for normal traffic flows. The work concludes by offering practical suggestion for securing similar enterprise management systems running on cloud infrastructure against cyber terrorists.
Application domains in which early performance evaluation is needed are becoming more complex. In addition to traditional measures of complexity due, for example, to the number of components, their interactions, complicated control coordination and schemes, emerging applications may require adaptive response and reconfiguration the impact of externally observable (security) parameters. In this paper we introduce an approach for effective modeling and analysis of performance and security tradeoffs. The approach identifies a suitable allocation of resources that meet performance requirements, while maximizing measurable security effects. We demonstrate this approach through the analysis of performance sensitivity of a Border Inspection Management System (BIMS) with changing security mechanisms (e.g. biometric system parameters for passenger identification). The final result is a model-based approach that allows us to take decisions about BIMS performance and security mechanisms on the basis of rates of traveler arrivals and traveler identification security guarantees. We describe the experience gained when applying this approach to daily flight arrival schedule of a real airport.
In this paper, we inspire from two analogies: the warfare kill zone and the airport check-in system, to tackle the issue of spam botnet detection. We add a new line of defense to the defense-in-depth model called the third line. This line is represented by a security framework, named the Spam Trapping System (STS) and adopts the prevent-then-detect approach to fight against spam botnets. The framework exploits the application sandboxing principle to prevent the spam from going out of the host and detect the corresponding malware bot. We show that the proposed framework can ensure better security against malware bots. In addition, an analytical study demonstrates that the framework offers optimal performance in terms of detection time and computational cost in comparison to intrusion detection systems based on static and dynamic analysis.