Biblio
The threat of cybercrime is becoming increasingly complex and diverse on putting citizen's data or money in danger. Cybercrime threats are often originating from trusted, malicious, or negligent insiders, who have excessive access privileges to sensitive data. The analysis of cybercrime insider investigation presents many opportunities for actionable intelligence on improving the quality and value of digital evidence. There are several advantages of applying Deep Packet Inspection (DPI) methods in cybercrime insider investigation. This paper introduces DPI method that can help investigators in developing new techniques and performing digital investigation process in forensically sound and timely fashion manner. This paper provides a survey of the packet inspection, which can be applied to cybercrime insider investigation.
The difficult of detecting, response, tracing the malicious behavior in cloud has brought great challenges to the law enforcement in combating cybercrimes. This paper presents a malicious behavior oriented framework of detection, emergency response, traceability, and digital forensics in cloud environment. A cloud-based malicious behavior detection mechanism based on SDN is constructed, which implements full-traffic flow detection technology and malicious virtual machine detection based on memory analysis. The emergency response and traceability module can clarify the types of the malicious behavior and the impacts of the events, and locate the source of the event. The key nodes and paths of the infection topology or propagation path of the malicious behavior will be located security measure will be dispatched timely. The proposed IaaS service based forensics module realized the virtualization facility memory evidence extraction and analysis techniques, which can solve volatile data loss problems that often happened in traditional forensic methods.
T138 combat cyber crimes, electronic evidence have played an increasing role, but in judicial practice the electronic evidence were not highly applied because of the natural contradiction between the epistemic uncertainty of electronic evidence and the principle of discretionary evidence of judge in the court. in this paper, we put forward a layer-built method to analyze the relevancy of electronic evidence, and discussed their analytical process combined with the case study. The initial practice shows the model is feasible and has a consulting value in analyzing the relevancy of electronic evidence.
Caching query results is an efficient technique for Web search engines. A state-of-the-art approach named Static-Dynamic Cache (SDC) is widely used in practice. Replacement policy is the key factor on the performance of cache system, and has been widely studied such as LIRS, ARC, CLOCK, SKLRU and RANDOM in different research areas. In this paper, we discussed replacement policies for static-dynamic cache and conducted the experiments on real large scale query logs from two famous commercial Web search engine companies. The experimental results show that ARC replacement policy could work well with static-dynamic cache, especially for large scale query results cache.
With the continued advancement of the internet and relevant programs, the number of exploitable loopholes in security systems increases. One such exploit that is plaguing the software scene is ransomware, a type of malware that weaves its way through these security loopholes and denies access to intellectual property and documents via encryption. The culprits will then demand a ransom as a price for data decryption. Many businesses face the issue of not having stringent security measures that are sufficient enough to negate the threat of ransomware. This jeopardizes the availability of sensitive data as corporations and individuals are at threat of losing data crucial to business or personal operations. Although certain countermeasures to deal with ransomware exist, the fact that a plethora of new ransomware cases keeps appearing every year points to the problem that they aren't effective enough. This paper aims to conceptualize practical solutions that can be used as foundations to build on in hope that more effective and proactive countermeasures to ransomware can be developed in the future.
Bitcoin is the most famous cryptocurrency currently operating with a total marketcap of almost 7 billion USD. This innovation stands strong on the feature of pseudo anonymity and strives on its innovative de-centralized architecture based on the Blockchain. The Blockchain is a distributed ledger that keeps a public record of all the transactions processed on the bitcoin protocol network in full transparency without revealing the identity of the sender and the receiver. Over the course of 2016, cryptocurrencies have shown some instances of abuse by criminals in their activities due to its interesting nature. Darknet marketplaces are increasing the volume of their businesses in illicit and illegal trades but also cryptocurrencies have been used in cases of extortion, ransom and as part of sophisticated malware modus operandi. We tackle these challenges by developing an analytical capability that allows us to map relationships on the blockchain and filter crime instances in order to investigate the abuse in law enforcement local environment. We propose a practical bitcoin analytical process and an analyzing system that stands alone and manages all data on the blockchain in real-time with tracing and visualizing techniques rendering transactions decipherable and useful for law enforcement investigation and training. Our system adopts combination of analyzing methods that provides statistics of address, graphical transaction relation, discovery of paths and clustering of already known addresses. We evaluated our system in the three criminal cases includes marketplace, ransomware and DDoS extortion. These are practical training in law enforcement, then we determined whether our system could help investigation process and training.
Promoting data sharing between organisations is challenging, without the added concerns over having actions traced. Even with encrypted search capabilities, the entities digital location and downloaded information can be traced, leaking information to the hosting organisation. This is a problem for law enforcement and government agencies, where any information leakage is not acceptable, especially for investigations. Anonymous routing is a technique to stop a host learning which agency is accessing information. Many related works for anonymous routing have been proposed, but are designed for Internet traffic, and are over complicated for internal usage. A streaming design for circuit creation is proposed using elliptic curve cryptography. Allowing for a simple anonymous routing solution, which provides fast performance with source and destination anonymity to other organisations.
While in business and private settings the disruptive impact of advanced information communication technology (ICT) have already been felt, the legal sector is now starting to face great disruptions due to such ICTs. Bits and pieces of innovations in the legal sector have been emerging for some time, affecting the performance of core functions and the legitimacy of public institutions. In this paper, we present our framework for enabling the smart government vision, particularly for the case of criminal justice systems, by unifying different isolated ICT-based solutions. Our framework, coined as Legal Logistics, supports the well-functioning of a legal system in order to streamline the innovations in these legal systems. The framework targets the exploitation of all relevant data generated by the ICT-based solutions. As will be illustrated for the Dutch criminal justice system, the framework may be used to integrate different ICT-based innovations and to gain insights about the well-functioning of the system. Furthermore, Legal Logistics can be regarded as a roadmap towards a smart and open justice.
This paper presents an initial framework for managing emergent ethical concerns during software engineering in society projects. We argue that such emergent considerations can neither be framed as absolute rules about how to act in relation to fixed and measurable conditions. Nor can they be addressed by simply framing them as non-functional requirements to be satisficed. Instead, a continuous process is needed that accepts the 'messiness' of social life and social research, seeks to understand complexity (rather than seek clarity), demands collective (not just individual) responsibility and focuses on dialogue over solutions. The framework has been derived based on retrospective analysis of ethical considerations in four software engineering in society projects in three different domains.
Certain crimes are difficult to be committed by individuals but carefully organised by group of associates and affiliates loosely connected to each other with a single or small group of individuals coordinating the overall actions. A common starting point in understanding the structural organisation of criminal groups is to identify the criminals and their associates. Situations arise in many criminal datasets where there is no direct connection among the criminals. In this paper, we investigate ties and community structure in crime data in order to understand the operations of both traditional and cyber criminals, as well as to predict the existence of organised criminal networks. Our contributions are twofold: we propose a bipartite network model for inferring hidden ties between actors who initiated an illegal interaction and objects affected by the interaction, we then validate the method in two case studies on pharmaceutical crime and underground forum data using standard network algorithms for structural and community analysis. The vertex level metrics and community analysis results obtained indicate the significance of our work in understanding the operations and structure of organised criminal networks which were not immediately obvious in the data. Identifying these groups and mapping their relationship to one another is essential in making more effective disruption strategies in the future.
Law enforcement employs an investigative approach based on marked money bills to track illegal drug dealers. In this paper we discuss research that aims at providing law enforcement with the cyber counterpart of that approach in order to track perpetrators that operate botnets. We have devised a novel steganographic approach that generates a watermark hidden within a honey token, i.e. A decoy Word document. The covert bits that comprise the watermark are carried via secret interpretation of object properties in the honey token. The encoding and decoding of object properties into covert bits follow a scheme based on bijective functions generated via a chaotic logistic map. The watermark is retrievable via a secret cryptographic key, which is generated and held by law enforcement. The honey token is leaked to a botmaster via a honey net. In the paper, we elaborate on possible means by which law enforcement can track the leaked honey token to the IP address of a botmaster's machine.