Biblio
Predicting software faults before software testing activities can help rational distribution of time and resources. Software metrics are used for software fault prediction due to their close relationship with software faults. Thanks to the non-linear fitting ability, Neural networks are increasingly used in the prediction model. We first filter metric set of the embedded software by statistical methods to reduce the dimensions of model input. Then we build a back propagation neural network with simple structure but good performance and apply it to two practical embedded software projects. The verification results show that the model has good ability to predict software faults.
In this work a platform-aware model-driven engineering process for building component-based embedded software systems using annotated analysis models is described. The process is supported by a framework, called MICOBS, that allows working with different component technologies and integrating different tools that, independently of the component technology, enable the analysis of non-functional properties based on the principles of composability and compositionality. An actor, called Framework Architect, is responsible for this integration. Three other actors take a relevant part in the analysis process. The Component Provider supplies the components, while the Component Tester is in charge of their validation. The latter also feeds MICOBS with the annotated analysis models that characterize the extra-functional properties of the components for the different platforms on which they can be deployed. The Application Architect uses these components to build new systems, performing the trade-off between different alternatives. At this stage, and in order to verify that the final system meets the extra-functional requirements, the Application Architect uses the reports generated by the integrated analysis tools. This process has been used to support the validation and verification of the on-board application software for the Instrument Control Unit of the Energetic Particle Detector of the Solar Orbiter mission.
A smart grid is a fully automated power electricity network, which operates, protects and controls all its physical environments of power electricity infrastructure being able to supply energy in an efficient and reliable way. As the importance of cyber-physical system (CPS) security is growing, various vulnerability analysis methodologies for general systems have been suggested, whereas there has been few practical research targeting the smart grid infrastructure. In this paper, we highlight the significance of security vulnerability analysis in the smart grid environment. Then we introduce various automated vulnerability analysis techniques from executable files. In our approach, we propose a novel binary-based vulnerability discovery method for AMI and EV charging system to automatically extract security-related features from the embedded software. Finally, we present the test result of vulnerability discovery applied for AMI and EV charging system in Korean smart grid environment.
Embedded software is found everywhere from our highly visible mobile devices to the confines of our car in the form of smart sensors. Embedded software companies are under huge pressure to produce safe applications that limit risks, and testing is absolutely critical to alleviate concerns regarding safety and user privacy. This requires using large test suites throughout the development process, increasing time-to-market and ultimately hindering competitivity. Speeding up test execution is, therefore, of paramount importance for embedded software developers. This is traditionally achieved by running, in parallel, multiple tests on large-scale clusters of computers. However, this approach is costly in terms of infrastructure maintenance and energy consumed, and is at times inconvenient as developers have to wait for their tests to be scheduled on a shared resource. We propose to look at exploiting GPUs (Graphics Processing Units) for running embedded software testing. GPUs are readily available in most computers and offer tremendous amounts of parallelism, making them an ideal target for embedded software testing. In this paper, we demonstrate, for the first time, how test executions of embedded C programs can be automatically performed on a GPU, without involving the end user. We take a compiler-assisted approach which automatically compiles the C program into GPU kernels for parallel execution of the input tests. Using this technique, we achieve an average speedup of 16Ã when compared to CPU execution of input tests across nine programs from an industry standard embedded benchmark suite.
Techniques commonly used for analyzing streaming video, audio, SIGINT, and network transmissions, at less-than-streaming rates, such as data decimation and ad-hoc sampling, can miss underlying structure, trends and specific events held in the data[3]. This work presents a secure-by-construction approach [7] for the upper-end data streams with rates from 10- to 100 Gigabits per second. The secure-by-construction approach strives to produce system security through the composition of individually secure hardware and software components. The proposed network processor can be used not only at data centers but also within networks and onboard embedded systems at the network periphery for a wide range of tasks, including preprocessing and data cleansing, signal encoding and compression, complex event processing, flow analysis, and other tasks related to collecting and analyzing streaming data. Our design employs a four-layer scalable hardware/software stack that can lead to inherently secure, easily constructed specialized high-speed stream processing. This work addresses the following contemporary problems: (1) There is a lack of hardware/software systems providing stream processing and data stream analysis operating at the target data rates; for high-rate streams the implementation options are limited: all-software solutions can't attain the target rates[1]. GPUs and GPGPUs are also infeasible: they were not designed for I/O at 10-100Gbps; they also have asymmetric resources for input and output and thus cannot be pipelined[4, 2], whereas custom chip-based solutions are costly and inflexible to changes, and FPGA-based solutions are historically hard to program[6]; (2) There is a distinct advantage to utilizing high-bandwidth or line-speed analytics to reduce time-to-discovery of information, particularly ones that can be pipelined together to conduct a series of processing tasks or data tests without impeding data rates; (3) There is potentially significant network infrastructure cost savings possible from compact and power-efficient analytic support deployed at the network periphery on the data source or one hop away; (4) There is a need for agile deployment in response to changing objectives; (5) There is an opportunity to constrain designs to use only secure components to achieve their specific objectives. We address these five problems in our stream processor design to provide secure, easily specified processing for low-latency, low-power 10-100Gbps in-line processing on top of a commodity high-end FPGA-based hardware accelerator network processor. With a standard interface a user can snap together various filter blocks, like Legos™, to form a custom processing chain. The overall design is a four-layer solution in which the structurally lowest layer provides the vast computational power to process line-speed streaming packets, and the uppermost layer provides the agility to easily shape the system to the properties of a given application. Current work has focused on design of the two lowest layers, highlighted in the design detail in Figure 1. The two layers shown in Figure 1 are the embeddable portion of the design; these layers, operating at up to 100Gbps, capture both the low- and high frequency components of a signal or stream, analyze them directly, and pass the lower frequency components, residues to the all-software upper layers, Layers 3 and 4; they also optionally supply the data-reduced output up to Layers 3 and 4 for additional processing. Layer 1 is analogous to a systolic array of processors on which simple low-level functions or actions are chained in series[5]. Examples of tasks accomplished at the lowest layer are: (a) check to see if Field 3 of the packet is greater than 5, or (b) count the number of X.75 packets, or (c) select individual fields from data packets. Layer 1 provides the lowest latency, highest throughput processing, analysis and data reduction, formulating raw facts from the stream; Layer 2, also accelerated in hardware and running at full network line rate, combines selected facts from Layer 1, forming a first level of information kernels. Layer 2 is comprised of a number of combiners intended to integrate facts extracted from Layer 1 for presentation to Layer 3. Still resident in FPGA hardware and hardware-accelerated, a Layer 2 combiner is comprised of state logic and soft-core microprocessors. Layer 3 runs in software on a host machine, and is essentially the bridge to the embeddable hardware; this layer exposes an API for the consumption of information kernels to create events and manage state. The generated events and state are also made available to an additional software Layer 4, supplying an interface to traditional software-based systems. As shown in the design detail, network data transitions systolically through Layer 1, through a series of light-weight processing filters that extract and/or modify packet contents. All filters have a similar interface: streams enter from the left, exit the right, and relevant facts are passed upward to Layer 2. The output of the end of the chain in Layer 1 shown in the Figure 1 can be (a) left unconnected (for purely monitoring activities), (b) redirected into the network (for bent pipe operations), or (c) passed to another identical processor, for extended processing on a given stream (scalability).