Visible to the public Biblio

Filters: Keyword is Geology  [Clear All Filters]
2022-07-29
Kientega, Raoul, Sidibé, Moustapha Hadji, Traore, Tiemogo.  2021.  Toward an Enhanced Tool for Internet Exchange Point Detection. 2021 3rd International Multidisciplinary Information Technology and Engineering Conference (IMITEC). :1–3.
Internet Exchange Points (IXPs) are critical components of the Internet infrastructure that affect its performance, evolution, security and economy. In this work, we introduce a technique to improve the well-known TraIXroute tool with its ability to identify IXPs. TraIXroute is a tool written in python3. It always encounters problems during its installation by network administrators and researchers. This problem remains unchanged in the field of internet ixp measurement tools. Our paper aims to make a critical analysis of TraIXroute tool which has some malfunctions. Furthermore, our main objective is to implement an improved tool for detecting ixps on the traceroute path with ipv4 and ipv6. The tool will have options for Geolocation of ixps as well as ASs. Our tool is written in C\# (C sharp) and python which are object oriented programming languages.
2022-06-09
Mangino, Antonio, Bou-Harb, Elias.  2021.  A Multidimensional Network Forensics Investigation of a State-Sanctioned Internet Outage. 2021 International Wireless Communications and Mobile Computing (IWCMC). :813–818.
In November 2019, the government of Iran enforced a week-long total Internet blackout that prevented the majority of Internet connectivity into and within the nation. This work elaborates upon the Iranian Internet blackout by characterizing the event through Internet-scale, near realtime network traffic measurements. Beginning with an investigation of compromised machines scanning the Internet, nearly 50 TB of network traffic data was analyzed. This work discovers 856,625 compromised IP addresses, with 17,182 attributed to the Iranian Internet space. By the second day of the Internet shut down, these numbers dropped by 18.46% and 92.81%, respectively. Empirical analysis of the Internet-of-Things (IoT) paradigm revealed that over 90% of compromised Iranian hosts were fingerprinted as IoT devices, which saw a significant drop throughout the shutdown (96.17% decrease by the blackout's second day). Further examination correlates BGP reachability metrics and related data with geolocation databases to statistically evaluate the number of reachable Iranian ASNs (dropping from approximately 1100 to under 200 reachable networks). In-depth investigation reveals the top affected ASNs, providing network forensic evidence of the longitudinal unplugging of such key networks. Lastly, the impact's interruption of the Bitcoin cryptomining market is highlighted, disclosing a massive spike in unsuccessful (i.e., pending) transactions. When combined, these network traffic measurements provide a multidimensional perspective of the Iranian Internet shutdown.
2022-06-06
Mirza, Mohammad Meraj, Karabiyik, Umit.  2021.  Enhancing IP Address Geocoding, Geolocating and Visualization for Digital Forensics. 2021 International Symposium on Networks, Computers and Communications (ISNCC). :1–7.
Internet Protocol (IP) address holds a probative value to the identification process in digital forensics. The decimal digit is a unique identifier that is beneficial in many investigations (i.e., network, email, memory). IP addresses can reveal important information regarding the device that the user uses during Internet activity. One of the things that IP addresses can essentially help digital forensics investigators in is the identification of the user machine and tracing evidence based on network artifacts. Unfortunately, it appears that some of the well-known digital forensic tools only provide functions to recover IP addresses from a given forensic image. Thus, there is still a gap in answering if IP addresses found in a smartphone can help reveal the user’s location and be used to aid investigators in identifying IP addresses that complement the user’s physical location. Furthermore, the lack of utilizing IP mapping and visualizing techniques has resulted in the omission of such digital evidence. This research aims to emphasize the importance of geolocation data in digital forensic investigations, propose an IP visualization technique considering several sources of evidence, and enhance the investigation process’s speed when its pertained to IP addresses using spatial analysis. Moreover, this research proposes a proof-of-concept (POC) standalone tool that can match critical IP addresses with approximate geolocations to fill the gap in this area.
2022-03-02
HAN, Yuqi, LIU, Jieying, LEI, Yunkai, LIU, Liyang, YE, Shengyong.  2021.  The Analysis and Application of Decentralized Cyber Layer and Distributed Security Control for Interconnected Conurbation Grids under Catastrophic Cascading Failures. 2021 3rd Asia Energy and Electrical Engineering Symposium (AEEES). :794–799.

The cluster-featured conurbation cyber-physical power system (CPPS) interconnected with tie-lines facing the hazards from catastrophic cascading failures. To achieve better real-time performance, enhance the autonomous ability and improve resilience for the clustered conurbation CPPS, the decentralized cyber structure and the corresponding distributed security control strategy is proposed. Facing failures, the real-time security control is incorporated to mitigate cascading failures. The distributed security control problem is solved reliably based on alternating direction method of multipliers (ADMM). The system overall resilience degradation index(SORDI) adopted reflects the influence of cascading failures on both the topological integrity and operational security. The case study illustrates the decentralized cyber layer and distributed control will decrease the data congestion and enhance the autonomous ability for clusters, thus perform better effectiveness in mitigating the cascading failures, especially in topological perspective. With the proposed distributed security control strategy, curves of SORDI show more characteristics of second-order percolation transition and the cascading failure threshold increase, which is more efficient when the initial failure size is near the threshold values or step-type inflection point. Because of the feature of geological aggregation under cluster-based attack, the efficiency of the cluster-focused distributed security control strategy is more obvious than other nodes attack circumstances.

2019-12-02
Elfar, Mahmoud, Zhu, Haibei, Cummings, M. L., Pajic, Miroslav.  2019.  Security-Aware Synthesis of Human-UAV Protocols. 2019 International Conference on Robotics and Automation (ICRA). :8011–8017.
In this work, we synthesize collaboration protocols for human-unmanned aerial vehicle (H-UAV) command and control systems, where the human operator aids in securing the UAV by intermittently performing geolocation tasks to confirm its reported location. We first present a stochastic game-based model for the system that accounts for both the operator and an adversary capable of launching stealthy false-data injection attacks, causing the UAV to deviate from its path. We also describe a synthesis challenge due to the UAV's hidden-information constraint. Next, we perform human experiments using a developed RESCHU-SA testbed to recognize the geolocation strategies that operators adopt. Furthermore, we deploy machine learning techniques on the collected experimental data to predict the correctness of a geolocation task at a given location based on its geographical features. By representing the model as a delayed-action game and formalizing the system objectives, we utilize off-the-shelf model checkers to synthesize protocols for the human-UAV coalition that satisfy these objectives. Finally, we demonstrate the usefulness of the H-UAV protocol synthesis through a case study where the protocols are experimentally analyzed and further evaluated by human operators.
2017-12-12
Islam, M. N., Patil, V. C., Kundu, S..  2017.  Determining proximal geolocation of IoT edge devices via covert channel. 2017 18th International Symposium on Quality Electronic Design (ISQED). :196–202.

Many IoT devices are part of fixed critical infrastructure, where the mere act of moving an IoT device may constitute an attack. Moving pressure, chemical and radiation sensors in a factory can have devastating consequences. Relocating roadside speed sensors, or smart meters without knowledge of command and control center can similarly wreck havoc. Consequently, authenticating geolocation of IoT devices is an important problem. Unfortunately, an IoT device itself may be compromised by an adversary. Hence, location information from the IoT device cannot be trusted. Thus, we have to rely on infrastructure to obtain a proximal location. Infrastructure routers may similarly be compromised. Therefore, there must be a way to authenticate trusted routers remotely. Unfortunately, IP packets may be blocked, hijacked or forged by an adversary. Therefore IP packets are not trustworthy either. Thus, we resort to covert channels for authenticating Internet packet routers as an intermediate step towards proximal geolocation of IoT devices. Several techniques have been proposed in the literature to obtain the geolocation of an edge device, but it has been shown that a knowledgeable adversary can circumvent these techniques. In this paper, we survey the state-of-the-art geolocation techniques and corresponding adversarial countermeasures to evade geolocation to justify the use of covert channels on networks. We propose a technique for determining proximal geolocation using covert channel. Challenges and directions for future work are also explored.

2015-05-06
Dainotti, A., King, A., Claffy, K., Papale, F., Pescape, A..  2015.  Analysis of a #x201c;/0 #x201d; Stealth Scan From a Botnet. Networking, IEEE/ACM Transactions on. 23:341-354.

Botnets are the most common vehicle of cyber-criminal activity. They are used for spamming, phishing, denial-of-service attacks, brute-force cracking, stealing private information, and cyber warfare. Botnets carry out network scans for several reasons, including searching for vulnerable machines to infect and recruit into the botnet, probing networks for enumeration or penetration, etc. We present the measurement and analysis of a horizontal scan of the entire IPv4 address space conducted by the Sality botnet in February 2011. This 12-day scan originated from approximately 3 million distinct IP addresses and used a heavily coordinated and unusually covert scanning strategy to try to discover and compromise VoIP-related (SIP server) infrastructure. We observed this event through the UCSD Network Telescope, a /8 darknet continuously receiving large amounts of unsolicited traffic, and we correlate this traffic data with other public sources of data to validate our inferences. Sality is one of the largest botnets ever identified by researchers. Its behavior represents ominous advances in the evolution of modern malware: the use of more sophisticated stealth scanning strategies by millions of coordinated bots, targeting critical voice communications infrastructure. This paper offers a detailed dissection of the botnet's scanning behavior, including general methods to correlate, visualize, and extrapolate botnet behavior across the global Internet.