Biblio
The impact of microarchitectural attacks in Personal Computers (PCs) can be further adapted to and observed in internetworked All Programmable System-on-Chip (AP SoC) platforms. This effort involves the access control or execution of Intellectual Property cores in the FPGA of an AP SoC Victim internetworked with an AP SoC Attacker via Internet Protocol (IP). Three conceptions of attacks were implemented: buffer overflow attack at the stack, return-oriented programming attack, and command-injection-based attack for dynamic reconfiguration in the FPGA. Indeed, a specific preventive countermeasure for each attack is proposed. The functionality of the countermeasures mainly comprises adapted words addition (stack protection) for the first and second attacks and multiple encryption for the third attack. In conclusion, the recommended countermeasures are realizable to counteract the implemented attacks.
Due to improving computational capacity of supercomputers, transmitting encrypted packets via one single network path is vulnerable to brute-force attacks. The versatile attackers secretly eavesdrop all the packets, classify packets into different streams, performs an exhaustive search for the decryption key, and extract sensitive personal information from the streams. However, new Internet Protocol (IP) brings great opportunities and challenges for preventing eavesdropping attacks. In this paper, we propose a Programming Protocol-independent Packet Processors (P4) based Network Immune Scheme (P4NIS) against the eavesdropping attacks. Specifically, P4NIS is equipped with three lines of defense to improve the network immunity. The first line is promiscuous forwarding by splitting all the traffic packets in different network paths disorderly. Complementally, the second line encrypts transmission port fields of the packets using diverse encryption algorithms. The encryption could distribute traffic packets from one stream into different streams, and disturb eavesdroppers to classify them correctly. Besides, P4NIS inherits the advantages from the existing encryption-based countermeasures which is the third line of defense. Using a paradigm of programmable data planes-P4, we implement P4NIS and evaluate its performances. Experimental results show that P4NIS can increase difficulties of eavesdropping significantly, and increase transmission throughput by 31.7% compared with state-of-the-art mechanisms.
A main goal of the paper is to discuss the world telecommunications strategy in transition to the IP world. The paper discuss the shifting from circuit switching to packet switching in telecommunications and show the main obstacle is excessive software. As a case, we are passing through the three generations of American military communications: (1) implementation of signaling protocol SS7 and Advanced Intelligent Network, (2) transformation from SS7 to IP protocol and, finally, (3) the extremely ambitious cybersecurity issues. We use the newer unclassified open Defense Information Systems Agency documents, particularly: Department of Defense Information Enterprise Architecture; Unified Capabilities the Army. We discuss the newer US Government Accountability Office (2018) report on military equipment cyber vulnerabilities.
The Machine Type Communication Devices (MTCDs) are usually based on Internet Protocol (IP), which can cause billions of connected objects to be part of the Internet. The enormous amount of data coming from these devices are quite heterogeneous in nature, which can lead to security issues, such as injection attacks, ballot stuffing, and bad mouthing. Consequently, this work considers machine learning trust evaluation as an effective and accurate option for solving the issues associate with security threats. In this paper, a comparative analysis is carried out with five different machine learning approaches: Naive Bayes (NB), Decision Tree (DT), Linear and Radial Support Vector Machine (SVM), KNearest Neighbor (KNN), and Random Forest (RF). As a critical element of the research, the recommendations consider different Machine-to-Machine (M2M) communication nodes with regard to their ability to identify malicious and honest information. To validate the performances of these models, two trust computation measures were used: Receiver Operating Characteristics (ROCs), Precision and Recall. The malicious data was formulated in Matlab. A scenario was created where 50% of the information were modified to be malicious. The malicious nodes were varied in the ranges of 10%, 20%, 30%, 40%, and the results were carefully analyzed.
Many IoT devices are part of fixed critical infrastructure, where the mere act of moving an IoT device may constitute an attack. Moving pressure, chemical and radiation sensors in a factory can have devastating consequences. Relocating roadside speed sensors, or smart meters without knowledge of command and control center can similarly wreck havoc. Consequently, authenticating geolocation of IoT devices is an important problem. Unfortunately, an IoT device itself may be compromised by an adversary. Hence, location information from the IoT device cannot be trusted. Thus, we have to rely on infrastructure to obtain a proximal location. Infrastructure routers may similarly be compromised. Therefore, there must be a way to authenticate trusted routers remotely. Unfortunately, IP packets may be blocked, hijacked or forged by an adversary. Therefore IP packets are not trustworthy either. Thus, we resort to covert channels for authenticating Internet packet routers as an intermediate step towards proximal geolocation of IoT devices. Several techniques have been proposed in the literature to obtain the geolocation of an edge device, but it has been shown that a knowledgeable adversary can circumvent these techniques. In this paper, we survey the state-of-the-art geolocation techniques and corresponding adversarial countermeasures to evade geolocation to justify the use of covert channels on networks. We propose a technique for determining proximal geolocation using covert channel. Challenges and directions for future work are also explored.
The Internet of Things (IoT) is an emerging architecture that seeks to interconnect all of the "things" we use on a daily basis. Whereas the Internet originated as a way to connect traditional computing devices in order to share information, IoT includes everything from automobiles to appliances to buildings. As networks and devices become more diverse and disparate in their communication methods and interfaces, traditional host-to host technologies such as Internet Protocol (IP) are challenged to provide the level of data exchange and security needed to operate in this new network paradigm. Named Data Networking (NDN) is a developing Internet architecture that can help implement the IoT paradigm in a more efficient and secure manner. This paper introduces the NDN architecture in comparison to the traditional IP-based architecture and discusses several security concepts pertaining to NDN that make this a powerful technology for implementing the Internet of Things.
High-speed IP address lookup is essential to achieve wire-speed packet forwarding in Internet routers. Ternary content addressable memory (TCAM) technology has been adopted to solve the IP address lookup problem because of its ability to perform fast parallel matching. However, the applicability of TCAMs presents difficulties due to cost and power dissipation issues. Various algorithms and hardware architectures have been proposed to perform the IP address lookup using ordinary memories such as SRAMs or DRAMs without using TCAMs. Among the algorithms, we focus on two efficient algorithms providing high-speed IP address lookup: parallel multiple-hashing (PMH) algorithm and binary search on level algorithm. This paper shows how effectively an on-chip Bloom filter can improve those algorithms. A performance evaluation using actual backbone routing data with 15,000-220,000 prefixes shows that by adding a Bloom filter, the complicated hardware for parallel access is removed without search performance penalty in parallel-multiple hashing algorithm. Search speed has been improved by 30-40 percent by adding a Bloom filter in binary search on level algorithm.
The Domain Name System (DNS) is widely seen as a vital protocol of the modern Internet. For example, popular services like load balancers and Content Delivery Networks heavily rely on DNS. Because of its important role, DNS is also a desirable target for malicious activities such as spamming, phishing, and botnets. To protect networks against these attacks, a number of DNS-based security approaches have been proposed. The key insight of our study is to measure the effectiveness of security approaches that rely on DNS in large-scale networks. For this purpose, we answer the following questions, How often is DNS used? Are most of the Internet flows established after contacting DNS? In this study, we collected data from the University of Auckland campus network with more than 33,000 Internet users and processed it to find out how DNS is being used. Moreover, we studied the flows that were established with and without contacting DNS. Our results show that less than 5 percent of the observed flows use DNS. Therefore, we argue that those security approaches that solely depend on DNS are not sufficient to protect large-scale networks.