Visible to the public Biblio

Found 232 results

Filters: Keyword is Testing  [Clear All Filters]
2022-03-23
Singhal, Abhinav, Maan, Akash, Chaudhary, Daksh, Vishwakarma, Dinesh.  2021.  A Hybrid Machine Learning and Data Mining Based Approach to Network Intrusion Detection. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :312–318.
This paper outlines an approach to build an Intrusion detection system for a network interface device. This research work has developed a hybrid intrusion detection system which involves various machine learning techniques along with inference detection for a comparative analysis. It is explained in 2 phases: Training (Model Training and Inference Network Building) and Detection phase (Working phase). This aims to solve all the current real-life problem that exists in machine learning algorithms as machine learning techniques are stiff they have their respective classification region outside which they cease to work properly. This paper aims to provide the best working machine learning technique out of the many used. The machine learning techniques used in comparative analysis are Decision Tree, Naïve Bayes, K-Nearest Neighbors (KNN) and Support Vector Machines (SVM) along with NSLKDD dataset for testing and training of our Network Intrusion Detection Model. The accuracy recorded for Decision Tree, Naïve Bayes, K-Nearest Neighbors (KNN) and Support Vector Machines(SVM) respectively when tested independently are 98.088%, 82.971%, 95.75%, 81.971% and when tested with inference detection model are 98.554%, 66.687%, 97.605%, 93.914%. Therefore, it can be concluded that our inference detection model helps in improving certain factors which are not detected using conventional machine learning techniques.
2022-03-15
Baluta, Teodora, Chua, Zheng Leong, Meel, Kuldeep S., Saxena, Prateek.  2021.  Scalable Quantitative Verification for Deep Neural Networks. 2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). :248—249.
Despite the functional success of deep neural networks (DNNs), their trustworthiness remains a crucial open challenge. To address this challenge, both testing and verification techniques have been proposed. But these existing techniques pro- vide either scalability to large networks or formal guarantees, not both. In this paper, we propose a scalable quantitative verification framework for deep neural networks, i.e., a test-driven approach that comes with formal guarantees that a desired probabilistic property is satisfied. Our technique performs enough tests until soundness of a formal probabilistic property can be proven. It can be used to certify properties of both deterministic and randomized DNNs. We implement our approach in a tool called PROVERO1 and apply it in the context of certifying adversarial robustness of DNNs. In this context, we first show a new attack- agnostic measure of robustness which offers an alternative to purely attack-based methodology of evaluating robustness being reported today. Second, PROVERO provides certificates of robustness for large DNNs, where existing state-of-the-art verification tools fail to produce conclusive results. Our work paves the way forward for verifying properties of distributions captured by real-world deep neural networks, with provable guarantees, even where testers only have black-box access to the neural network.
2022-03-08
Melati, Seshariana Rahma, Yovita, Leanna Vidya, Mayasari, Ratna.  2021.  Caching Performance of Named Data Networking with NDNS. 2021 International Conference on Information Networking (ICOIN). :261–266.
Named Data Networking, a future internet network architecture design that can change the network's perspective from previously host-centric to data-centric. It can reduce the network load, especially on the server part, and can provide advantages in multicast cases or re-sending of content data to users due to transmission errors. In NDN, interest messages are sent to the router, and if they are not immediately found, they will continue to be forwarded, resulting in a large load. NDNS or a DNS-Like Name Service for NDN is needed to know exactly where the content is to improve system performance. NDNS is a database that provides information about the zone location of the data contained in the network. In this study, a simulation was conducted to test the NDNS mechanism on the NDN network to support caching on the NDN network by testing various topologies with changes in the size of the content store and the number of nodes used. NDNS is outperform compared to NDN without NDNS for cache hit ratio and load parameters.
2022-03-01
Huang, Shanshi, Peng, Xiaochen, Jiang, Hongwu, Luo, Yandong, Yu, Shimeng.  2021.  Exploiting Process Variations to Protect Machine Learning Inference Engine from Chip Cloning. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.
Machine learning inference engine is of great interest to smart edge computing. Compute-in-memory (CIM) architecture has shown significant improvements in throughput and energy efficiency for hardware acceleration. Emerging nonvolatile memory (eNVM) technologies offer great potentials for instant on and off by dynamic power gating. Inference engine is typically pre-trained by the cloud and then being deployed to the field. There is a new security concern on cloning of the weights stored on eNVM-based CIM chip. In this paper, we propose a countermeasure to the weight cloning attack by exploiting the process variations of the periphery circuitry. In particular, we use weight fine-tuning to compensate the analog-to-digital converter (ADC) offset for a specific chip instance while inducing significant accuracy drop for cloned chip instances. We evaluate our proposed scheme on a CIFAR-10 classification task using a VGG- 8 network. Our results show that with precisely chosen transistor size on the employed SAR-ADC, we could maintain 88% 90% accuracy for the fine-tuned chip while the same set of weights cloned on other chips will only have 20 40% accuracy on average. The weight fine-tune could be completed within one epoch of 250 iterations. On average only 0.02%, 0.025%, 0.142% of cells are updated for 2-bit, 4-bit, 8-bit weight precisions in each iteration.
2022-02-25
Schreiber, Andreas, Sonnekalb, Tim, Kurnatowski, Lynn von.  2021.  Towards Visual Analytics Dashboards for Provenance-driven Static Application Security Testing. 2021 IEEE Symposium on Visualization for Cyber Security (VizSec). :42–46.
The use of static code analysis tools for security audits can be time consuming, as the many existing tools focus on different aspects and therefore development teams often use several of these tools to keep code quality high and prevent security issues. Displaying the results of multiple tools, such as code smells and security warnings, in a unified interface can help developers get a better overview and prioritize upcoming work. We present visualizations and a dashboard that interactively display results from static code analysis for “interesting” commits during development. With this, we aim to provide an effective visual analytics tool for code security analysis results.
2022-02-07
Chen, Wenbin, Chen, Yuxin, Jiao, Yishuo, Liu, Quanchun.  2021.  Security Awareness Scheme of Edge Computing in IoT Systems. 2021 IEEE 4th International Conference on Computer and Communication Engineering Technology (CCET). :332–335.
As edge computing has been widely used in IoT (Internet of Things) systems, the security has become one of important issues for IoT. Because of a large amount of private information stored in edge computing devices, it makes edge computing devices attractive to various kinds attacks. To deal with this challenge, this paper proposes a security awareness scheme for edge computing devices in IoT system. Test results show that the proposed approach can improve services-oriented security situation of IoT systems based on edge computing.
2022-01-25
Marksteiner, Stefan, Marko, Nadja, Smulders, Andre, Karagiannis, Stelios, Stahl, Florian, Hamazaryan, Hayk, Schlick, Rupert, Kraxberger, Stefan, Vasenev, Alexandr.  2021.  A Process to Facilitate Automated Automotive Cybersecurity Testing. 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring). :1—7.
Modern vehicles become increasingly digitalized with advanced information technology-based solutions like advanced driving assistance systems and vehicle-to-x communications. These systems are complex and interconnected. Rising complexity and increasing outside exposure has created a steadily rising demand for more cyber-secure systems. Thus, also standardization bodies and regulators issued standards and regulations to prescribe more secure development processes. This security, however, also has to be validated and verified. In order to keep pace with the need for more thorough, quicker and comparable testing, today's generally manual testing processes have to be structured and optimized. Based on existing and emerging standards for cybersecurity engineering, this paper therefore outlines a structured testing process for verifying and validating automotive cybersecurity, for which there is no standardized method so far. Despite presenting a commonly structured framework, the process is flexible in order to allow implementers to utilize their own, accustomed toolsets.
2022-01-11
Everson, Douglas, Cheng, Long.  2021.  Compressing Network Attack Surfaces for Practical Security Analysis. 2021 IEEE Secure Development Conference (SecDev). :23–29.
Testing or defending the security of a large network can be challenging because of the sheer number of potential ingress points that need to be investigated and evaluated for vulnerabilities. In short, manual security testing and analysis do not easily scale to large networks. While it has been shown that clustering can simplify the problem somewhat, the data structures and formats returned by the latest network mapping tools are not conducive to clustering algorithms. In this paper we introduce a hybrid similarity algorithm to compute the distance between two network services and then use those calculations to support a clustering algorithm designed to compress a large network attack surface by orders of magnitude. Doing so allows for new testing strategies that incorporate outlier detection and smart consolidation of test cases to improve accuracy and timeliness of testing. We conclude by presenting two case studies using an organization's network attack surface data to demonstrate the effectiveness of this approach.
2021-12-21
Rodigari, Simone, O'Shea, Donna, McCarthy, Pat, McCarry, Martin, McSweeney, Sean.  2021.  Performance Analysis of Zero-Trust Multi-Cloud. 2021 IEEE 14th International Conference on Cloud Computing (CLOUD). :730–732.
Zero Trust security model permits to secure cloud native applications while encrypting all network communication, authenticating, and authorizing every request. The service mesh can enable Zero Trust using a side-car proxy without changes to the application code. To the best of our knowledge, no previous work has provided a performance analysis of Zero Trust in a multi-cloud environment. This paper proposes a multi-cloud framework and a testing workflow to analyse performance of the data plane under load and the impact on the control plane, when Zero Trust is enabled. The results of preliminary tests show that Istio has reduced latency variability in responding to sequential HTTP requests. Results also reveal that the overall CPU and memory usage can increase based on service mesh configuration and the cloud environment.
2021-12-20
Wang, Pei, Bangert, Julian, Kern, Christoph.  2021.  If It's Not Secure, It Should Not Compile: Preventing DOM-Based XSS in Large-Scale Web Development with API Hardening. 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). :1360–1372.
With tons of efforts spent on its mitigation, Cross-site scripting (XSS) remains one of the most prevalent security threats on the internet. Decades of exploitation and remediation demonstrated that code inspection and testing alone does not eliminate XSS vulnerabilities in complex web applications with a high degree of confidence. This paper introduces Google's secure-by-design engineering paradigm that effectively prevents DOM-based XSS vulnerabilities in large-scale web development. Our approach, named API hardening, enforces a series of company-wide secure coding practices. We provide a set of secure APIs to replace native DOM APIs that are prone to XSS vulnerabilities. Through a combination of type contracts and appropriate validation and escaping, the secure APIs ensure that applications based thereon are free of XSS vulnerabilities. We deploy a simple yet capable compile-time checker to guarantee that developers exclusively use our hardened APIs to interact with the DOM. We make various of efforts to scale this approach to tens of thousands of engineers without significant productivity impact. By offering rigorous tooling and consultant support, we help developers adopt the secure coding practices as seamlessly as possible. We present empirical results showing how API hardening has helped reduce the occurrences of XSS vulnerabilities in Google's enormous code base over the course of two-year deployment.
2021-11-29
Setiawan, Dharma Yusuf, Naning Hertiana, Sofia, Negara, Ridha Muldina.  2021.  6LoWPAN Performance Analysis of IoT Software-Defined-Network-Based Using Mininet-Io. 2020 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS). :60–65.
Software Defined Network (SDN) is a new paradigm in network architecture. The basic concept of SDN itself is to separate the control plane and forwarding plane explicitly. In the last few years, SDN technology has become one of the exciting topics for researchers, the development of SDN which was carried out, one of which was implementing the Internet of Things (IoT) devices in the SDN network architecture model. Mininet-IoT is developing the Mininet network emulator by adding virtualized IoT devices, 6LoWPAN based on wireless Linux standards, and 802.15.4 wireless simulation drivers. Mininet-IoT expands the Mininet code class by adding or modifying functions in it. This research will discuss the performance of the 6LoWPAN device on the internet of things (IoT) network by applying the SDN paradigm. We use the Mininet-IoT emulator and the Open Network Operating System (ONOS) controller using the internet of things (IoT) IPv6 forwarding. Performance testing by comparing some of the topologies of the addition of host, switch, and cluster. The test results of the two scenarios tested can be concluded; the throughput value obtained has decreased compared to the value of back-traffic traffic. While the packet loss value obtained is on average above 15%. Jitter value, delay, throughput, and packet loss are still in the category of enough, good, and very good based on TIPHON and ITU-T standards.
2021-11-08
Karode, Tanakorn, Werapun, Warodom.  2020.  Performance Analysis of Trustworthy Online Review System Using Blockchain. 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). :510–513.
Today, the online review system cannot fully support the business since there are fraudulent activities inside. The companies that get low score reviews are induced to raise their score for the market competition capability by paying to the platform for deleting or editing the posted reviews. Moreover, the automatic filtration system of a platform removes some reviews without the awareness of the users. The low transparency platform causes low credibility toward the reviews. Blockchain technology provides exceptionally high transparency since every action can be traced publicly. However, there are some tradeoffs that need to be considered, such as cost and response time. This work tends to find the potential of using Blockchain technology in the online review system by testing four implementation approaches of the Ethereum Smart Contract. The result illustrates that using IPFS to store the data is a practical way of reducing transaction costs. Besides, preventing using Smart Contract states can significantly reduce costs too. The response time for using the Blockchain and IPFS system is slower than the centralized system. However, posting a review does not need a fast response. Thus, it is worthy of trading response time with transparency and cost. In the business view, the review posting with cost causes more difficulty to generate fake reviews. Moreover, there are other advantages over the centralized system, such as the reward system, bogus review voting, and global database. Thus, credibility improvement for a consumer online review system is a potential application of Blockchain technology.
2021-10-04
Abbas Hamdani, Syed Wasif, Waheed Khan, Abdul, Iltaf, Naima, Iqbal, Waseem.  2020.  DTMSim-IoT: A Distributed Trust Management Simulator for IoT Networks. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :491–498.
In recent years, several trust management frame-works and models have been proposed for the Internet of Things (IoT). Focusing primarily on distributed trust management schemes; testing and validation of these models is still a challenging task. It requires the implementation of the proposed trust model for verification and validation of expected outcomes. Nevertheless, a stand-alone and standard IoT network simulator for testing of distributed trust management scheme is not yet available. In this paper, a .NET-based Distributed Trust Management Simulator for IoT Networks (DTMSim-IoT) is presented which enables the researcher to implement any static/dynamic trust management model to compute the trust value of a node. The trust computation will be calculated based on the direct-observation and trust value is updated after every transaction. Transaction history and logs of each event are maintained which can be viewed and exported as .csv file for future use. In addition to that, the simulator can also draw a graph based on the .csv file. Moreover, the simulator also offers to incorporate the feature of identification and mitigation of the On-Off Attack (OOA) in the IoT domain. Furthermore, after identifying any malicious activity by any node in the networks, the malevolent node is added to the malicious list and disseminated in the network to prevent potential On-Off attacks.
Zhang, Chong, Liu, Xiao, Zheng, Xi, Li, Rui, Liu, Huai.  2020.  FengHuoLun: A Federated Learning based Edge Computing Platform for Cyber-Physical Systems. 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). :1–4.
Cyber-Physical Systems (CPS) such as intelligent connected vehicles, smart farming and smart logistics are constantly generating tons of data and requiring real-time data processing capabilities. Therefore, Edge Computing which provisions computing resources close to the End Devices from the network edge is becoming the ideal platform for CPS. However, it also brings many issues and one of the most prominent challenges is how to ensure the development of trustworthy smart services given the dynamic and distributed nature of Edge Computing. To tackle this challenge, this paper proposes a novel Federated Learning based Edge Computing platform for CPS, named “FengHuoLun”. Specifically, based on FengHuoLun, we can: 1) implement smart services where machine learning models are trained in a trusted Federated Learning framework; 2) assure the trustworthiness of smart services where CPS behaviours are tested and monitored using the Federated Learning framework. As a work in progress, we have presented an overview of the FengHuoLun platform and also some preliminary studies on its key components, and finally discussed some important future research directions.
2021-09-21
Lin, Kuang-Yao, Huang, Wei-Ren.  2020.  Using Federated Learning on Malware Classification. 2020 22nd International Conference on Advanced Communication Technology (ICACT). :585–589.
In recent years, everything has been more and more systematic, and it would generate many cyber security issues. One of the most important of these is the malware. Modern malware has switched to a high-growth phase. According to the AV-TEST Institute showed that there are over 350,000 new malicious programs (malware) and potentially unwanted applications (PUA) be registered every day. This threat was presented and discussed in the present paper. In addition, we also considered data privacy by using federated learning. Feature extraction can be performed based on malware. The proposed method achieves very high accuracy ($\approx$0.9167) on the dataset provided by VirusTotal.
2021-09-07
Al'aziz, Bram Andika Ahmad, Sukarno, Parman, Wardana, Aulia Arif.  2020.  Blacklisted IP Distribution System to Handle DDoS Attacks on IPS Snort Based on Blockchain. 2020 6th Information Technology International Seminar (ITIS). :41–45.
The mechanism for distributing information on the source of the attack by combining blockchain technology with the Intrusion Prevention System (IPS) can be done so that DDoS attack mitigation becomes more flexible, saves resources and costs. Also, by informing the blacklisted Internet Protocol(IP), each IPS can share attack source information so that attack traffic blocking can be carried out on IPS that are closer to the source of the attack. Therefore, the attack traffic passing through the network can be drastically reduced because the attack traffic has been blocked on the IPS that is closer to the attack source. The blocking of existing DDoS attack traffic is generally carried out on each IPS without a mechanism to share information on the source of the attack so that each IPS cannot cooperate. Also, even though the DDoS attack traffic did not reach the server because it had been blocked by IPS, the attack traffic still flooded the network so that network performance was reduced. Through smart contracts on the Ethereum blockchain, it is possible to inform the source of the attack or blacklisted IP addresses without requiring additional infrastructure. The blacklisted IP address is used by IPS to detect and handle DDoS attacks. Through the blacklisted IP distribution scheme, testing and analysis are carried out to see information on the source of the attack on each IPS and the attack traffic that passes on the network. The result is that each IPS can have the same blacklisted IP so that each IPS can have the same attack source information. The results also showed that the attack traffic through the network infrastructure can be drastically reduced. Initially, the total number of attack packets had an average of 115,578 reduced to 27,165.
Sami, Muhammad, Ibarra, Matthew, Esparza, Anamaria C., Al-Jufout, Saleh, Aliasgari, Mehrdad, Mozumdar, Mohammad.  2020.  Rapid, Multi-vehicle and Feed-forward Neural Network based Intrusion Detection System for Controller Area Network Bus. 2020 IEEE Green Energy and Smart Systems Conference (IGESSC). :1–6.
In this paper, an Intrusion Detection System (IDS) in the Controller Area Network (CAN) bus of modern vehicles has been proposed. NESLIDS is an anomaly detection algorithm based on the supervised Deep Neural Network (DNN) architecture that is designed to counter three critical attack categories: Denial-of-service (DoS), fuzzy, and impersonation attacks. Our research scope included modifying DNN parameters, e.g. number of hidden layer neurons, batch size, and activation functions according to how well it maximized detection accuracy and minimized the false positive rate (FPR) for these attacks. Our methodology consisted of collecting CAN Bus data from online and in real-time, injecting attack data after data collection, preprocessing in Python, training the DNN, and testing the model with different datasets. Results show that the proposed IDS effectively detects all attack types for both types of datasets. NESLIDS outperforms existing approaches in terms of accuracy, scalability, and low false alarm rates.
2021-08-31
Zarzour, Hafed, Al shboul, Bashar, Al-Ayyoub, Mahmoud, Jararweh, Yaser.  2020.  A convolutional neural network-based reviews classification method for explainable recommendations. 2020 Seventh International Conference on Social Networks Analysis, Management and Security (SNAMS). :1–5.
Recent advances in information filtering have resulted in effective recommender systems that are able to provide online personalized recommendations to millions of users from all over the world. However, most of these systems ignore the explanation purpose while producing recommendations with high-quality results. Moreover, the classification of reviews given to users as explanations is not fully exploited in previous studies. In this paper, we develop a convolutional neural network-based reviews classification method for explainable recommendation systems. The convolutional neural network is used to extract the reviews features for predicting whether the reviews provided as explanations are positive or negative. Based on such additional information, users can understand not only why certain items are recommended for them but also get support to know the nature of such explanations. We conduct experiments on a dataset from Amazon. The experimental results show that our method outperforms state-of-the-art methods.
Adamov, Alexander, Carlsson, Anders.  2020.  Reinforcement Learning for Anti-Ransomware Testing. 2020 IEEE East-West Design Test Symposium (EWDTS). :1–5.
In this paper, we are going to verify the possibility to create a ransomware simulation that will use an arbitrary combination of known tactics and techniques to bypass an anti-malware defense. To verify this hypothesis, we conducted an experiment in which an agent was trained with the help of reinforcement learning to run the ransomware simulator in a way that can bypass anti-ransomware solution and encrypt the target files. The novelty of the proposed method lies in applying reinforcement learning to anti-ransomware testing that may help to identify weaknesses in the anti-ransomware defense and fix them before a real attack happens.
2021-08-17
Yuliana, Mike, Suwadi, Wirawan.  2020.  Key Rate Enhancement by Using the Interval Approach in Symmetric Key Extraction Mechanism. 2020 Third International Conference on Vocational Education and Electrical Engineering (ICVEE). :1–6.
Wireless security is confronted with the complexity of the secret key distribution process, which is difficult to implement on an Ad Hoc network without a key management infrastructure. The symmetric key extraction mechanism from a response channel in a wireless environment is a very promising alternative solution with the simplicity of the key distribution process. Various mechanisms have been proposed for extracting the symmetric key, but many mechanisms produce low rates of the symmetric key due to the high bit differences that occur. This led to the fact that the reconciliation phase was unable to make corrections, as a result of which many key bits were lost, and the time required to obtain a symmetric key was increased. In this paper, we propose the use of an interval approach that divides the response channel into segments at specific intervals to reduce the key bit difference and increase the key rates. The results of tests conducted in the wireless environment show that the use of these mechanisms can increase the rate of the keys up to 35% compared to existing mechanisms.
Monakhov, Yuri, Kuznetsova, Anna, Monakhov, Mikhail, Telny, Andrey, Bednyatsky, Ilya.  2020.  Performance Evaluation of the Modified HTB Algorithm. 2020 Dynamics of Systems, Mechanisms and Machines (Dynamics). :1—5.
In this article, authors present the results of testing the modified HTB traffic control algorithm in an experimental setup. The algorithm is implemented as a Linux kernel module. An analysis of the experimental results revealed the effect of uneven packet loss in priority classes. In the second part of the article, the authors propose a solution to this problem by applying a distribution scheme for the excess of tokens, according to which excess class tokens are given to the leaf with the highest priority. The new modification of the algorithm was simulated in the AnyLogic environment. The results of an experimental study demonstrated that dividing the excess tokens of the parent class between daughter classes is less effective in terms of network performance than allocating the excess tokens to a high-priority class during the competition for tokens between classes. In general, a modification of the HTB algorithm that implements the proposed token surplus distribution scheme yields more consistent delay times for the high-priority class.
2021-08-12
Johari, Rahul, Kaur, Ishveen, Tripathi, Reena, Gupta, Kanika.  2020.  Penetration Testing in IoT Network. 2020 5th International Conference on Computing, Communication and Security (ICCCS). :1—7.
Penetration testing, also known as Pen testing is usually performed by a testing professional in order to detect security threats involved in a system. Penetration testing can also be viewed as a fake cyber Security attack, done in order to see whether the system is secure and free of vulnerabilities. Penetration testing is widely used for testing both Network and Software, but somewhere it fails to make IoT more secure. In IoT the security risk is growing day-by-day, due to which the IoT networks need more penetration testers to test the security. In the proposed work an effort has been made to compile and aggregate the information regarding VAPT(Vulnerability Assessment and Penetrating Testing) in the area of IoT.
2021-08-11
Li, Yuekang, Chen, Hongxu, Zhang, Cen, Xiong, Siyang, Liu, Chaoyi, Wang, Yi.  2020.  Ori: A Greybox Fuzzer for SOME/IP Protocols in Automotive Ethernet. 2020 27th Asia-Pacific Software Engineering Conference (APSEC). :495—499.
With the emergence of smart automotive devices, the data communication between these devices gains increasing importance. SOME/IP is a light-weight protocol to facilitate inter- process/device communication, which supports both procedural calls and event notifications. Because of its simplicity and capability, SOME/IP is getting adopted by more and more automotive devices. Subsequently, the security of SOME/IP applications becomes crucial. However, previous security testing techniques cannot fit the scenario of vulnerability detection SOME/IP applications due to miscellaneous challenges such as the difficulty of server-side testing programs in parallel, etc. By addressing these challenges, we propose Ori - a greybox fuzzer for SOME/IP applications, which features two key innovations: the attach fuzzing mode and structural mutation. The attach fuzzing mode enables Ori to test server programs efficiently, and the structural mutation allows Ori to generate valid SOME/IP packets to reach deep paths of the target program effectively. Our evaluation shows that Ori can detect vulnerabilities in SOME/IP applications effectively and efficiently.
2021-08-03
Yang, Jianguo, Lei, Dengyun, Chen, Deyang, Li, Jing, Jiang, Haijun, Ding, Qingting, Luo, Qing, Xue, Xiaoyong, Lv, Hangbing, Zeng, Xiaoyang et al..  2020.  A Machine-Learning-Resistant 3D PUF with 8-layer Stacking Vertical RRAM and 0.014% Bit Error Rate Using In-Cell Stabilization Scheme for IoT Security Applications. 2020 IEEE International Electron Devices Meeting (IEDM). :28.6.1–28.6.4.
In this work, we propose and demonstrate a multi-layer 3-dimensional (3D) vertical RRAM (VRRAM) PUF with in-cell stabilization scheme to improve both cost efficiency and reliability. An 8-layer VRRAM array was manufactured with excellent uniformity and good endurance of \textbackslashtextgreater107. Apart from the variation in RRAM resistance, enhanced randomness is obtained thanks to the parasitic IR drop and abundant sneak current paths in 3D VRRAM. To deal with the common issue of unstable bits in PUF output, in-cell stabilization is proposed by first employing asymmetric biasing to detect the unstable bits and then exploiting reprogramming to expand the deviation to stabilize the output. The bit error rate is reduced by \textbackslashtextgreater7X (68X) for 3(5) times reprogramming. The proposed PUF features excellent resistance against machine learning attack and passes both National Institute of Standards and Technology (NIST) 800-22 and NIST 800-90B test suites.
2021-08-02
Bouniot, Quentin, Audigier, Romaric, Loesch, Angélique.  2020.  Vulnerability of Person Re-Identification Models to Metric Adversarial Attacks. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). :3450—3459.
Person re-identification (re-ID) is a key problem in smart supervision of camera networks. Over the past years, models using deep learning have become state of the art. However, it has been shown that deep neural networks are flawed with adversarial examples, i.e. human-imperceptible perturbations. Extensively studied for the task of image closed- set classification, this problem can also appear in the case of open-set retrieval tasks. Indeed, recent work has shown that we can also generate adversarial examples for metric learning systems such as re-ID ones. These models remain vulnerable: when faced with adversarial examples, they fail to correctly recognize a person, which represents a security breach. These attacks are all the more dangerous as they are impossible to detect for a human operator. Attacking a metric consists in altering the distances between the feature of an attacked image and those of reference images, i.e. guides. In this article, we investigate different possible attacks depending on the number and type of guides available. From this metric attack family, two particularly effective attacks stand out. The first one, called Self Metric Attack, is a strong attack that does not need any image apart from the attacked image. The second one, called FurthestNegative Attack, makes full use of a set of images. Attacks are evaluated on commonly used datasets: Market1501 and DukeMTMC. Finally, we propose an efficient extension of adversarial training protocol adapted to metric learning as a defense that increases the robustness of re-ID models.1