Biblio
With the frequent use of Wi-Fi and hotspots that provide a wireless Internet environment, awareness and threats to wireless AP (Access Point) security are steadily increasing. Especially when using unauthorized APs in company, government and military facilities, there is a high possibility of being subjected to various viruses and hacking attacks. It is necessary to detect unauthorized Aps for protection of information. In this paper, we use RTT (Round Trip Time) value data set to detect authorized and unauthorized APs in wired / wireless integrated environment, analyze them using machine learning algorithms including SVM (Support Vector Machine), C4.5, KNN (K Nearest Neighbors) and MLP (Multilayer Perceptron). Overall, KNN shows the highest accuracy.
Recently, threat of previously unknown cyber-attacks are increasing because existing security systems are not able to detect them. Past cyber-attacks had simple purposes of leaking personal information by attacking the PC or destroying the system. However, the goal of recent hacking attacks has changed from leaking information and destruction of services to attacking large-scale systems such as critical infrastructures and state agencies. In the other words, existing defence technologies to counter these attacks are based on pattern matching methods which are very limited. Because of this fact, in the event of new and previously unknown attacks, detection rate becomes very low and false negative increases. To defend against these unknown attacks, which cannot be detected with existing technology, we propose a new model based on big data analysis techniques that can extract information from a variety of sources to detect future attacks. We expect our model to be the basis of the future Advanced Persistent Threat(APT) detection and prevention system implementations.