Biblio
With the frequent use of Wi-Fi and hotspots that provide a wireless Internet environment, awareness and threats to wireless AP (Access Point) security are steadily increasing. Especially when using unauthorized APs in company, government and military facilities, there is a high possibility of being subjected to various viruses and hacking attacks. It is necessary to detect unauthorized Aps for protection of information. In this paper, we use RTT (Round Trip Time) value data set to detect authorized and unauthorized APs in wired / wireless integrated environment, analyze them using machine learning algorithms including SVM (Support Vector Machine), C4.5, KNN (K Nearest Neighbors) and MLP (Multilayer Perceptron). Overall, KNN shows the highest accuracy.
Recently, cellular operators have started migrating to IPv6 in response to the increasing demand for IP addresses. With the introduction of IPv6, cellular middleboxes, such as firewalls for preventing malicious traffic from the Internet and stateful NAT64 boxes for providing backward compatibility with legacy IPv4 services, have become crucial to maintain stability of cellular networks. This paper presents security problems of the currently deployed IPv6 middleboxes of five major operators. To this end, we first investigate several key features of the current IPv6 deployment that can harm the safety of a cellular network as well as its customers. These features combined with the currently deployed IPv6 middlebox allow an adversary to launch six different attacks. First, firewalls in IPv6 cellular networks fail to block incoming packets properly. Thus, an adversary could fingerprint cellular devices with scanning, and further, she could launch denial-of-service or over-billing attacks. Second, vulnerabilities in the stateful NAT64 box, a middlebox that maps an IPv6 address to an IPv4 address (and vice versa), allow an adversary to launch three different attacks: 1) NAT overflow attack that allows an adversary to overflow the NAT resources, 2) NAT wiping attack that removes active NAT mappings by exploiting the lack of TCP sequence number verification of firewalls, and 3) NAT bricking attack that targets services adopting IP-based blacklisting by preventing the shared external IPv4 address from accessing the service. We confirmed the feasibility of these attacks with an empirical analysis. We also propose effective countermeasures for each attack.
Named Data Networking (NDN) is one of the future internet architectures, which is a clean-slate approach. NDN provides intelligent data retrieval using the principles of name-based symmetrical forwarding of Interest/Data packets and innetwork caching. The continually increasing demand for rapid dissemination of large-scale scientific data is driving the use of NDN in data-intensive science experiments. In this paper, we establish an intercontinental NDN testbed. In the testbed, an NDN-based application that targets climate science as an example data intensive science application is designed and implemented, which has differentiated features compared to those of previous studies. We verify experimental justification of using NDN for climate science in the intercontinental network, through performance comparisons between classical delivery techniques and NDN-based climate data delivery.