Biblio
Over the past decade, the reliance on Unmanned Aerial Systems (UAS) to carry out critical missions has grown drastically. With an increased reliance on UAS as mission assets and the dependency of UAS on cyber resources, cyber security of UAS must be improved by adopting sound security principles and relevant technologies from the computing community. On the other hand, the traditional avionics community, being aware of the importance of cyber security, is looking at new architecture and designs that can accommodate both the traditional safety oriented principles as well as the cyber security principles and techniques. It is with the effective and timely convergence of these domains that a holistic approach and co-design can meet the unique requirements of modern systems and operations. In this paper, authors from both the cyber security and avionics domains describe our joint effort and insights obtained during the course of designing secure and resilient embedded avionics systems.
Homeland Security (HS) is a growing field of study in the U.S. today, generally covering risk management, terrorism studies, policy development, and other topics related to the broad field. Information security threats to both the public and private sectors are growing in intensity, frequency, and severity, and are a very real threat to the security of the nation. While there are many models for information security education at all levels of higher education, these programs are invariably offered as a technical course of study, these curricula are generally not well suited to HS students. As a result, information systems and cyber security principles are under represented in the typical HS program. The authors propose a course of study in cyber security designed to capitalize on the intellectual strengths of students in this discipline and that are consistent with the broad suite of professional needs in this discipline.