Visible to the public Biblio

Filters: Author is Whelihan, D.  [Clear All Filters]
2019-05-01
Li, J. H., Schafer, D., Whelihan, D., Lassini, S., Evancich, N., Kwak, K. J., Vai, M., Whitman, H..  2018.  Designing Secure and Resilient Embedded Avionics Systems. 2018 IEEE Cybersecurity Development (SecDev). :139–139.

Over the past decade, the reliance on Unmanned Aerial Systems (UAS) to carry out critical missions has grown drastically. With an increased reliance on UAS as mission assets and the dependency of UAS on cyber resources, cyber security of UAS must be improved by adopting sound security principles and relevant technologies from the computing community. On the other hand, the traditional avionics community, being aware of the importance of cyber security, is looking at new architecture and designs that can accommodate both the traditional safety oriented principles as well as the cyber security principles and techniques. It is with the effective and timely convergence of these domains that a holistic approach and co-design can meet the unique requirements of modern systems and operations. In this paper, authors from both the cyber security and avionics domains describe our joint effort and insights obtained during the course of designing secure and resilient embedded avionics systems.

2019-02-14
Leemaster, J., Vai, M., Whelihan, D., Whitman, H., Khazan, R..  2018.  Functionality and Security Co-Design Environment for Embedded Systems. 2018 IEEE High Performance Extreme Computing Conference (HPEC). :1-5.

For decades, embedded systems, ranging from intelligence, surveillance, and reconnaissance (ISR) sensors to electronic warfare and electronic signal intelligence systems, have been an integral part of U.S. Department of Defense (DoD) mission systems. These embedded systems are increasingly the targets of deliberate and sophisticated attacks. Developers thus need to focus equally on functionality and security in both hardware and software development. For critical missions, these systems must be entrusted to perform their intended functions, prevent attacks, and even operate with resilience under attacks. The processor in a critical system must thus provide not only a root of trust, but also a foundation to monitor mission functions, detect anomalies, and perform recovery. We have developed a Lincoln Asymmetric Multicore Processing (LAMP) architecture, which mitigates adversarial cyber effects with separation and cryptography and provides a foundation to build a resilient embedded system. We will describe a design environment that we have created to enable the co-design of functionality and security for mission assurance.

2018-02-02
Whelihan, D., Vai, M., Evanich, N., Kwak, K. J., Li, J., Britton, M., Frantz, B., Hadcock, D., Lynch, M., Schafer, D. et al..  2017.  Designing agility and resilience into embedded systems. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :249–254.

Cyber-Physical Systems (CPS) such as Unmanned Aerial Systems (UAS) sense and actuate their environment in pursuit of a mission. The attack surface of these remotely located, sensing and communicating devices is both large, and exposed to adversarial actors, making mission assurance a challenging problem. While best-practice security policies should be followed, they are rarely enough to guarantee mission success as not all components in the system may be trusted and the properties of the environment (e.g., the RF environment) may be under the control of the attacker. CPS must thus be built with a high degree of resilience to mitigate threats that security cannot alleviate. In this paper, we describe the Agile and Resilient Embedded Systems (ARES) methodology and metric set. The ARES methodology pursues cyber security and resilience (CSR) as high level system properties to be developed in the context of the mission. An analytic process guides system developers in defining mission objectives, examining principal issues, applying CSR technologies, and understanding their interactions.