Visible to the public Biblio

Filters: Keyword is Software and Application Security  [Clear All Filters]
2022-02-25
Schreiber, Andreas, Sonnekalb, Tim, Kurnatowski, Lynn von.  2021.  Towards Visual Analytics Dashboards for Provenance-driven Static Application Security Testing. 2021 IEEE Symposium on Visualization for Cyber Security (VizSec). :42–46.
The use of static code analysis tools for security audits can be time consuming, as the many existing tools focus on different aspects and therefore development teams often use several of these tools to keep code quality high and prevent security issues. Displaying the results of multiple tools, such as code smells and security warnings, in a unified interface can help developers get a better overview and prioritize upcoming work. We present visualizations and a dashboard that interactively display results from static code analysis for “interesting” commits during development. With this, we aim to provide an effective visual analytics tool for code security analysis results.
2014-09-17
Subramani, Shweta, Vouk, Mladen, Williams, Laurie.  2014.  An Analysis of Fedora Security Profile. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :35:1–35:2.

This paper examines security faults/vulnerabilities reported for Fedora. Results indicate that, at least in some situations, fault roughly constant may be used to guide estimation of residual vulnerabilities in an already released product, as well as possibly guide testing of the next version of the product.

Yang, Wei, Xiao, Xusheng, Pandita, Rahul, Enck, William, Xie, Tao.  2014.  Improving Mobile Application Security via Bridging User Expectations and Application Behaviors. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :32:1–32:2.

To keep malware out of mobile application markets, existing techniques analyze the security aspects of application behaviors and summarize patterns of these security aspects to determine what applications do. However, user expectations (reflected via user perception in combination with user judgment) are often not incorporated into such analysis to determine whether application behaviors are within user expectations. This poster presents our recent work on bridging the semantic gap between user perceptions of the application behaviors and the actual application behaviors.

Ibrahim, Naseem.  2014.  Trustworthy Context-dependent Services. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :20:1–20:2.

With the wide popularity of Cloud Computing, Service-oriented Computing is becoming the de-facto approach for the development of distributed systems. This has introduced the issue of trustworthiness with respect to the services being provided. Service Requesters are provided with a wide range of services that they can select from. Usually the service requester compare between these services according to their cost and quality. One essential part of the quality of a service is the trustworthiness properties of such services. Traditional service models focuses on service functionalities and cost when defining services. This paper introduces a new service model that extends traditional service models to support trustworthiness properties.

Kurilova, Darya, Omar, Cyrus, Nistor, Ligia, Chung, Benjamin, Potanin, Alex, Aldrich, Jonathan.  2014.  Type-specific Languages to Fight Injection Attacks. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :18:1–18:2.

Injection vulnerabilities have topped rankings of the most critical web application vulnerabilities for several years [1, 2]. They can occur anywhere where user input may be erroneously executed as code. The injected input is typically aimed at gaining unauthorized access to the system or to private information within it, corrupting the system's data, or disturbing system availability. Injection vulnerabilities are tedious and difficult to prevent.

Ray, Arnab, Cleaveland, Rance.  2014.  An Analysis Method for Medical Device Security. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :16:1–16:2.

This paper is a proposal for a poster. In it we describe a medical device security approach that researchers at Fraunhofer used to analyze different kinds of medical devices for security vulnerabilities. These medical devices were provided to Fraunhofer by a medical device manufacturer whose name we cannot disclose due to non-disclosure agreements.

King, Jason, Williams, Laurie.  2014.  Log Your CRUD: Design Principles for Software Logging Mechanisms. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :5:1–5:10.

According to a 2011 survey in healthcare, the most commonly reported breaches of protected health information involved employees snooping into medical records of friends and relatives. Logging mechanisms can provide a means for forensic analysis of user activity in software systems by proving that a user performed certain actions in the system. However, logging mechanisms often inconsistently capture user interactions with sensitive data, creating gaps in traces of user activity. Explicit design principles and systematic testing of logging mechanisms within the software development lifecycle may help strengthen the overall security of software. The objective of this research is to observe the current state of logging mechanisms by performing an exploratory case study in which we systematically evaluate logging mechanisms by supplementing the expected results of existing functional black-box test cases to include log output. We perform an exploratory case study of four open-source electronic health record (EHR) logging mechanisms: OpenEMR, OSCAR, Tolven eCHR, and WorldVistA. We supplement the expected results of 30 United States government-sanctioned test cases to include log output to track access of sensitive data. We then execute the test cases on each EHR system. Six of the 30 (20%) test cases failed on all four EHR systems because user interactions with sensitive data are not logged. We find that viewing protected data is often not logged by default, allowing unauthorized views of data to go undetected. Based on our results, we propose a set of principles that developers should consider when developing logging mechanisms to ensure the ability to capture adequate traces of user activity.