Visible to the public Biblio

Filters: Keyword is Privacy Protections  [Clear All Filters]
2021-08-31
Zhang, Yifei, Gao, Neng, Chen, Junsha.  2020.  A Practical Defense against Attribute Inference Attacks in Session-based Recommendations. 2020 IEEE International Conference on Web Services (ICWS). :355–363.
When users in various web and mobile applications enjoy the convenience of recommendation systems, they are vulnerable to attribute inference attacks. The accumulating online behaviors of users (e.g., clicks, searches, ratings) naturally brings out user preferences, and poses an inevitable threat of privacy that adversaries can infer one's private profiles (e.g., gender, sexual orientation, political view) with AI-based algorithms. Existing defense methods assume the existence of a trusted third party, rely on computationally intractable algorithms, or have impact on recommendation utility. These imperfections make them impractical for privacy preservation in real-life scenarios. In this work, we introduce BiasBooster, a practical proactive defense method based on behavior segmentation, to protect user privacy against attribute inference attacks from user behaviors, while retaining recommendation utility with a heuristic recommendation aggregation module. BiasBooster is a user-centric approach from client side, which proactively divides a user's behaviors into weakly related segments and perform them with several dummy identities, then aggregates real-time recommendations for user from different dummy identities. We estimate its effectiveness of preservation on both privacy and recommendation utility through extensive evaluations on two real-world datasets. A Chrome extension is conducted to demonstrate the feasibility of applying BiasBooster in real world. Experimental results show that compared to existing defenses, BiasBooster substantially reduces the averaged accuracy of attribute inference attacks, with minor utility loss of recommendations.
2020-10-26
Miao, Xu, Han, Guangjie, He, Yu, Wang, Hao, Jiang, Jinfang.  2018.  A Protecting Source-Location Privacy Scheme for Wireless Sensor Networks. 2018 IEEE International Conference on Networking, Architecture and Storage (NAS). :1–5.
An exciting network called smart IoT has great potential to improve the level of our daily activities and the communication. Source location privacy is one of the critical problems in the wireless sensor network (WSN). Privacy protections, especially source location protection, prevent sensor nodes from revealing valuable information about targets. In this paper, we first discuss about the current security architecture and attack modes. Then we propose a scheme based on cloud for protecting source location, which is named CPSLP. This proposed CPSLP scheme transforms the location of the hotspot to cause an obvious traffic inconsistency. We adopt multiple sinks to change the destination of packet randomly in each transmission. The intermediate node makes routing path more varied. The simulation results demonstrate that our scheme can confuse the detection of adversary and reduce the capture probability.
2020-08-13
Augusto, Cristian, Morán, Jesús, De La Riva, Claudio, Tuya, Javier.  2019.  Test-Driven Anonymization for Artificial Intelligence. 2019 IEEE International Conference On Artificial Intelligence Testing (AITest). :103—110.
In recent years, data published and shared with third parties to develop artificial intelligence (AI) tools and services has significantly increased. When there are regulatory or internal requirements regarding privacy of data, anonymization techniques are used to maintain privacy by transforming the data. The side-effect is that the anonymization may lead to useless data to train and test the AI because it is highly dependent on the quality of the data. To overcome this problem, we propose a test-driven anonymization approach for artificial intelligence tools. The approach tests different anonymization efforts to achieve a trade-off in terms of privacy (non-functional quality) and functional suitability of the artificial intelligence technique (functional quality). The approach has been validated by means of two real-life datasets in the domains of healthcare and health insurance. Each of these datasets is anonymized with several privacy protections and then used to train classification AIs. The results show how we can anonymize the data to achieve an adequate functional suitability in the AI context while maintaining the privacy of the anonymized data as high as possible.
2017-09-05
Luo, Chu, Fylakis, Angelos, Partala, Juha, Klakegg, Simon, Goncalves, Jorge, Liang, Kaitai, Seppänen, Tapio, Kostakos, Vassilis.  2016.  A Data Hiding Approach for Sensitive Smartphone Data. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. :557–568.

We develop and evaluate a data hiding method that enables smartphones to encrypt and embed sensitive information into carrier streams of sensor data. Our evaluation considers multiple handsets and a variety of data types, and we demonstrate that our method has a computational cost that allows real-time data hiding on smartphones with negligible distortion of the carrier stream. These characteristics make it suitable for smartphone applications involving privacy-sensitive data such as medical monitoring systems and digital forensics tools.

2017-08-22
Luo, Chu, Fylakis, Angelos, Partala, Juha, Klakegg, Simon, Goncalves, Jorge, Liang, Kaitai, Seppänen, Tapio, Kostakos, Vassilis.  2016.  A Data Hiding Approach for Sensitive Smartphone Data. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. :557–568.

We develop and evaluate a data hiding method that enables smartphones to encrypt and embed sensitive information into carrier streams of sensor data. Our evaluation considers multiple handsets and a variety of data types, and we demonstrate that our method has a computational cost that allows real-time data hiding on smartphones with negligible distortion of the carrier stream. These characteristics make it suitable for smartphone applications involving privacy-sensitive data such as medical monitoring systems and digital forensics tools.

2016-07-13
Giulia Fanti, University of Illinois at Urbana-Champaign, Peter Kairouz, University of Illinois at Urbana-Champaign, Sewoong Oh, University of at Urbana-Champaign, Kannan Ramchandra, University of California, Berkeley, Pramod Viswanath, University of Illinois at Urbana-Champaign.  2016.  Rumor Source Obfuscation on Irregular Trees. ACM SIGMETRICS.

Anonymous messaging applications have recently gained popularity as a means for sharing opinions without fear of judgment or repercussion. These messages propagate anonymously over a network, typically de ned by social connections or physical proximity. However, recent advances in rumor source detection show that the source of such an anonymous message can be inferred by certain statistical inference attacks. Adaptive di usion was recently proposed as a solution that achieves optimal source obfuscation over regular trees. However, in real social networks, the degrees difer from node to node, and adaptive di usion can be signicantly sub-optimal. This gap increases as the degrees become more irregular.

In order to quantify this gap, we model the underlying network as coming from standard branching processes with i.i.d. degree distributions. Building upon the analysis techniques from branching processes, we give an analytical characterization of the dependence of the probability of detection achieved by adaptive di usion on the degree distribution. Further, this analysis provides a key insight: passing a rumor to a friend who has many friends makes the source more ambiguous. This leads to a new family of protocols that we call Preferential Attachment Adaptive Di usion (PAAD). When messages are propagated according to PAAD, we give both the MAP estimator for nding the source and also an analysis of the probability of detection achieved by this adversary. The analytical results are not directly comparable, since the adversary's observed information has a di erent distribution under adaptive di usion than under PAAD. Instead, we present results from numerical experiments that suggest that PAAD achieves a lower probability of detection, at the cost of increased communication for coordination.

2014-09-17
Davis, Agnes, Shashidharan, Ashwin, Liu, Qian, Enck, William, McLaughlin, Anne, Watson, Benjamin.  2014.  Insecure Behaviors on Mobile Devices Under Stress. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :31:1–31:2.

One of the biggest challenges in mobile security is human behavior. The most secure password may be useless if it is sent as a text or in an email. The most secure network is only as secure as its most careless user. Thus, in the current project we sought to discover the conditions under which users of mobile devices were most likely to make security errors. This scaffolds a larger project where we will develop automatic ways of detecting such environments and eventually supporting users during these times to encourage safe mobile behaviors.

Tembe, Rucha, Zielinska, Olga, Liu, Yuqi, Hong, Kyung Wha, Murphy-Hill, Emerson, Mayhorn, Chris, Ge, Xi.  2014.  Phishing in International Waters: Exploring Cross-national Differences in Phishing Conceptualizations Between Chinese, Indian and American Samples. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :8:1–8:7.

One hundred-sixty four participants from the United States, India and China completed a survey designed to assess past phishing experiences and whether they engaged in certain online safety practices (e.g., reading a privacy policy). The study investigated participants' reported agreement regarding the characteristics of phishing attacks, types of media where phishing occurs and the consequences of phishing. A multivariate analysis of covariance indicated that there were significant differences in agreement regarding phishing characteristics, phishing consequences and types of media where phishing occurs for these three nationalities. Chronological age and education did not influence the agreement ratings; therefore, the samples were demographically equivalent with regards to these variables. A logistic regression analysis was conducted to analyze the categorical variables and nationality data. Results based on self-report data indicated that (1) Indians were more likely to be phished than Americans, (2) Americans took protective actions more frequently than Indians by destroying old documents, and (3) Americans were more likely to notice the "padlock" security icon than either Indian or Chinese respondents. The potential implications of these results are discussed in terms of designing culturally sensitive anti-phishing solutions.