Biblio
We develop and evaluate a data hiding method that enables smartphones to encrypt and embed sensitive information into carrier streams of sensor data. Our evaluation considers multiple handsets and a variety of data types, and we demonstrate that our method has a computational cost that allows real-time data hiding on smartphones with negligible distortion of the carrier stream. These characteristics make it suitable for smartphone applications involving privacy-sensitive data such as medical monitoring systems and digital forensics tools.
We develop and evaluate a data hiding method that enables smartphones to encrypt and embed sensitive information into carrier streams of sensor data. Our evaluation considers multiple handsets and a variety of data types, and we demonstrate that our method has a computational cost that allows real-time data hiding on smartphones with negligible distortion of the carrier stream. These characteristics make it suitable for smartphone applications involving privacy-sensitive data such as medical monitoring systems and digital forensics tools.
Anonymous messaging applications have recently gained popularity as a means for sharing opinions without fear of judgment or repercussion. These messages propagate anonymously over a network, typically de ned by social connections or physical proximity. However, recent advances in rumor source detection show that the source of such an anonymous message can be inferred by certain statistical inference attacks. Adaptive di usion was recently proposed as a solution that achieves optimal source obfuscation over regular trees. However, in real social networks, the degrees difer from node to node, and adaptive di usion can be signicantly sub-optimal. This gap increases as the degrees become more irregular.
In order to quantify this gap, we model the underlying network as coming from standard branching processes with i.i.d. degree distributions. Building upon the analysis techniques from branching processes, we give an analytical characterization of the dependence of the probability of detection achieved by adaptive di usion on the degree distribution. Further, this analysis provides a key insight: passing a rumor to a friend who has many friends makes the source more ambiguous. This leads to a new family of protocols that we call Preferential Attachment Adaptive Di usion (PAAD). When messages are propagated according to PAAD, we give both the MAP estimator for nding the source and also an analysis of the probability of detection achieved by this adversary. The analytical results are not directly comparable, since the adversary's observed information has a di erent distribution under adaptive di usion than under PAAD. Instead, we present results from numerical experiments that suggest that PAAD achieves a lower probability of detection, at the cost of increased communication for coordination.
One of the biggest challenges in mobile security is human behavior. The most secure password may be useless if it is sent as a text or in an email. The most secure network is only as secure as its most careless user. Thus, in the current project we sought to discover the conditions under which users of mobile devices were most likely to make security errors. This scaffolds a larger project where we will develop automatic ways of detecting such environments and eventually supporting users during these times to encourage safe mobile behaviors.
One hundred-sixty four participants from the United States, India and China completed a survey designed to assess past phishing experiences and whether they engaged in certain online safety practices (e.g., reading a privacy policy). The study investigated participants' reported agreement regarding the characteristics of phishing attacks, types of media where phishing occurs and the consequences of phishing. A multivariate analysis of covariance indicated that there were significant differences in agreement regarding phishing characteristics, phishing consequences and types of media where phishing occurs for these three nationalities. Chronological age and education did not influence the agreement ratings; therefore, the samples were demographically equivalent with regards to these variables. A logistic regression analysis was conducted to analyze the categorical variables and nationality data. Results based on self-report data indicated that (1) Indians were more likely to be phished than Americans, (2) Americans took protective actions more frequently than Indians by destroying old documents, and (3) Americans were more likely to notice the "padlock" security icon than either Indian or Chinese respondents. The potential implications of these results are discussed in terms of designing culturally sensitive anti-phishing solutions.