Biblio
The paper presents a secure solution that provides VoIP service for mobile users, handling both pre-call and mid-call mobility. Pre-call mobility is implemented using a presence server that acts as a DNS for the moving users. Our approach also detects any change in the attachment point of the moving users and transmits it to the peer entity by in band signaling using socket communications. For true mid-call mobility we also employ buffering techniques that store packets for the duration of the signaling procedure. The solution was implemented for Android devices and it uses ASP technology for the server part.
Many systems rely on passwords for authentication. Due to numerous accounts for different services, users have to choose and remember a significant number of passwords. Password-Manager applications address this issue by storing the user's passwords. They are especially useful on mobile devices, because of the ubiquitous access to the account passwords. Password-Managers often use key derivation functions to convert a master password into a cryptographic key suitable for encrypting the list of passwords, thus protecting the passwords against unauthorized, off-line access. Therefore, design and implementation flaws in the key derivation function impact password security significantly. Design and implementation problems in the key derivation function can render the encryption on the password list useless, by for example allowing efficient bruteforce attacks, or - even worse - direct decryption of the stored passwords. In this paper, we analyze the key derivation functions of popular Android Password-Managers with often startling results. With this analysis, we want to raise the awareness of developers of security critical apps for security, and provide an overview about the current state of implementation security of security-critical applications.
Over the past decade, we have witnessed a huge upsurge in social networking which continues to touch and transform our lives till present day. Social networks help us to communicate amongst our acquaintances and friends with whom we share similar interests on a common platform. Globally, there are more than 200 million visually impaired people. Visual impairment has many issues associated with it, but the one that stands out is the lack of accessibility to content for entertainment and socializing safely. This paper deals with the development of a keyboard less social networking website for visually impaired. The term keyboard less signifies minimum use of keyboard and allows the user to explore the contents of the website using assistive technologies like screen readers and speech to text (STT) conversion technologies which in turn provides a user friendly experience for the target audience. As soon as the user with minimal computer proficiency opens this website, with the help of screen reader, he/she identifies the username and password fields. The user speaks out his username and with the help of STT conversion (using Web Speech API), the username is entered. Then the control moves over to the password field and similarly, the password of the user is obtained and matched with the one saved in the website database. The concept of acoustic fingerprinting has been implemented for successfully validating the passwords of registered users and foiling intentions of malicious attackers. On successful match of the passwords, the user is able to enjoy the services of the website without any further hassle. Once the access obstacles associated to deal with social networking sites are successfully resolved and proper technologies are put to place, social networking sites can be a rewarding, fulfilling, and enjoyable experience for the visually impaired people.
In smart grid, critical data like monitoring data, usage data, state estimation, billing data etc are regularly being talked among its elements. So, security of such a system, if violated, results in massive losses and damages. By compromising with security aspect of such a system is as good as committing suicide. Thus in this paper, we have proposed security mechanism in Advanced Metering Infrastructure of smart grid, formed as Mesh-Zigbee topology. This security mechanism involves PKI based Digital certificate Authentication and Intrusion detection system to protect the AMI from internal and external security attack.
Advanced Metering Infrastructure (AMI) is the core component in a smart grid that exhibits a highly complex network configuration. AMI shares information about consumption, outages, and electricity rates reliably and efficiently by bidirectional communication between smart meters and utilities. However, the numerous smart meters being connected through mesh networks open new opportunities for attackers to interfere with communications and compromise utilities assets or steal customers private information. In this paper, we present a new DoS attack, called puppet attack, which can result in denial of service in AMI network. The intruder can select any normal node as a puppet node and send attack packets to this puppet node. When the puppet node receives these attack packets, this node will be controlled by the attacker and flood more packets so as to exhaust the network communication bandwidth and node energy. Simulation results show that puppet attack is a serious and packet deliver rate goes down to 20%-10%.
The electric network frequency (ENF) criterion is a recently developed technique for audio timestamp identification, which involves the matching between extracted ENF signal and reference data. For nearly a decade, conventional matching criterion has been based on the minimum mean squared error (MMSE) or maximum correlation coefficient. However, the corresponding performance is highly limited by low signal-to-noise ratio, short recording durations, frequency resolution problems, and so on. This paper presents a threshold-based dynamic matching algorithm (DMA), which is capable of autocorrecting the noise affected frequency estimates. The threshold is chosen according to the frequency resolution determined by the short-time Fourier transform (STFT) window size. A penalty coefficient is introduced to monitor the autocorrection process and finally determine the estimated timestamp. It is then shown that the DMA generalizes the conventional MMSE method. By considering the mainlobe width in the STFT caused by limited frequency resolution, the DMA achieves improved identification accuracy and robustness against higher levels of noise and the offset problem. Synthetic performance analysis and practical experimental results are provided to illustrate the advantages of the DMA.
Wireless sensor networks (WSNs) are prone to propagating malware because of special characteristics of sensor nodes. Considering the fact that sensor nodes periodically enter sleep mode to save energy, we develop traditional epidemic theory and construct a malware propagation model consisting of seven states. We formulate differential equations to represent the dynamics between states. We view the decision-making problem between system and malware as an optimal control problem; therefore, we formulate a malware-defense differential game in which the system can dynamically choose its strategies to minimize the overall cost whereas the malware intelligently varies its strategies over time to maximize this cost. We prove the existence of the saddle-point in the game. Further, we attain optimal dynamic strategies for the system and malware, which are bang-bang controls that can be conveniently operated and are suitable for sensor nodes. Experiments identify factors that influence the propagation of malware. We also determine that optimal dynamic strategies can reduce the overall cost to a certain extent and can suppress the malware propagation. These results support a theoretical foundation to limit malware in WSNs.
Large number of digital images and videos are acquired, stored, processed and shared nowadays. High quality imaging hardware and low cost, user friendly image editing software make digital mediums vulnerable to modifications. One of the most popular image modification techniques is copy move forgery. This tampering technique copies part of an image and pastes it into another part on the same image to conceal or to replicate some part of the image. Researchers proposed many techniques to detect copy move forged regions of images recently. These methods divide image into overlapping blocks and extract features to determine similarity among group of blocks. Selection of the feature extraction algorithm plays an important role on the accuracy of detection methods. Column averages of 1D-FT of rows is used to extract features from overlapping blocks on the image. Blocks are transformed into frequency domain using 1D-FT of the rows and average values of the transformed columns form feature vectors. Similarity of feature vectors indicates possible forged regions. Results show that the proposed method can detect copy pasted regions with higher accuracy compared to similar works reported in the literature. The method is also more resistant against the Gaussian blurring or JPEG compression attacks as shown in the results.
In military operation or emergency response situations, very frequently a commander will need to assemble and dynamically manage Community of Interest (COI) mobile groups to achieve a critical mission assigned despite failure, disconnection or compromise of COI members. We combine the designs of COI hierarchical management for scalability and reconfigurability with COI dynamic trust management for survivability and intrusion tolerance to compose a scalable, reconfigurable, and survivable COI management protocol for managing COI mission-oriented mobile groups in heterogeneous mobile environments. A COI mobile group in this environment would consist of heterogeneous mobile entities such as communication-device-carried personnel/robots and aerial or ground vehicles operated by humans exhibiting not only quality of service (QoS) characters, e.g., competence and cooperativeness, but also social behaviors, e.g., connectivity, intimacy and honesty. A COI commander or a subtask leader must measure trust with both social and QoS cognition depending on mission task characteristics and/or trustee properties to ensure successful mission execution. In this paper, we present a dynamic hierarchical trust management protocol that can learn from past experiences and adapt to changing environment conditions, e.g., increasing misbehaving node population, evolving hostility and node density, etc. to enhance agility and maximize application performance. With trust-based misbehaving node detection as an application, we demonstrate how our proposed COI trust management protocol is resilient to node failure, disconnection and capture events, and can help maximize application performance in terms of minimizing false negatives and positives in the presence of mobile nodes exhibiting vastly distinct QoS and social behaviors.
As wireless networks become more pervasive, the amount of the wireless data is rapidly increasing. One of the biggest challenges of wide adoption of distributed data storage is how to store these data securely. In this work, we study the frequency-based attack, a type of attack that is different from previously well-studied ones, that exploits additional adversary knowledge of domain values and/or their exact/approximate frequencies to crack the encrypted data. To cope with frequency-based attacks, the straightforward 1-to-1 substitution encryption functions are not sufficient. We propose a data encryption strategy based on 1-to-n substitution via dividing and emulating techniques to defend against the frequency-based attack, while enabling efficient query evaluation over encrypted data. We further develop two frameworks, incremental collection and clustered collection, which are used to defend against the global frequency-based attack when the knowledge of the global frequency in the network is not available. Built upon our basic encryption schemes, we derive two mechanisms, direct emulating and dual encryption, to handle updates on the data storage for energy-constrained sensor nodes and wireless devices. Our preliminary experiments with sensor nodes and extensive simulation results show that our data encryption strategy can achieve high security guarantee with low overhead.
Mobile cloud computing is a combination of mobile computing and cloud computing that provides a platform for mobile users to offload heavy tasks and data on the cloud, thus, helping them to overcome the limitations of their mobile devices. However, while utilizing the mobile cloud computing technology users lose physical control of their data; this ultimately calls for the need of a data security protocol. Although, numerous such protocols have been proposed,none of them consider a cloudlet based architecture. A cloudlet is a reliable, resource-rich computer/cluster which is well-connected to the internet and is available to nearby mobile devices. In this paper, we propose a data security protocol for a distributed cloud architecture having cloudlet integrated with the base station, using the property of perfect forward secrecy. Our protocol not only protects data from any unauthorized user, but also prevents exposure of data to the cloud owner.
We propose a novel phishing detection architecture based on transparent virtualization technologies and isolation of the own components. The architecture can be deployed as a security extension for virtual machines (VMs) running in the cloud. It uses fine-grained VM introspection (VMI) to extract, filter and scale a color-based fingerprint of web pages which are processed by a browser from the VM's memory. By analyzing the human perceptual similarity between the fingerprints, the architecture can reveal and mitigate phishing attacks which are based on redirection to spoofed web pages and it can also detect “Man-in-the-Browser” (MitB) attacks. To the best of our knowledge, the architecture is the first anti-phishing solution leveraging virtualization technologies. We explain details about the design and the implementation and we show results of an evaluation with real-world data.
Hardware Trojan Threats (HTTs) are stealthy components embedded inside integrated circuits (ICs) with an intention to attack and cripple the IC similar to viruses infecting the human body. Previous efforts have focused essentially on systems being compromised using HTTs and the effectiveness of physical parameters including power consumption, timing variation and utilization for detecting HTTs. We propose a novel metric for hardware Trojan detection coined as HTT detectability metric (HDM) that uses a weighted combination of normalized physical parameters. HTTs are identified by comparing the HDM with an optimal detection threshold; if the monitored HDM exceeds the estimated optimal detection threshold, the IC will be tagged as malicious. As opposed to existing efforts, this work investigates a system model from a designer perspective in increasing the security of the device and an adversary model from an attacker perspective exposing and exploiting the vulnerabilities in the device. Using existing Trojan implementations and Trojan taxonomy as a baseline, seven HTTs were designed and implemented on a FPGA testbed; these Trojans perform a variety of threats ranging from sensitive information leak, denial of service to beat the Root of Trust (RoT). Security analysis on the implemented Trojans showed that existing detection techniques based on physical characteristics such as power consumption, timing variation or utilization alone does not necessarily capture the existence of HTTs and only a maximum of 57% of designed HTTs were detected. On the other hand, 86% of the implemented Trojans were detected with HDM. We further carry out analytical studies to determine the optimal detection threshold that minimizes the summation of false alarm and missed detection probabilities.
In military operation or emergency response situations, very frequently a commander will need to assemble and dynamically manage Community of Interest (COI) mobile groups to achieve a critical mission assigned despite failure, disconnection or compromise of COI members. We combine the designs of COI hierarchical management for scalability and reconfigurability with COI dynamic trust management for survivability and intrusion tolerance to compose a scalable, reconfigurable, and survivable COI management protocol for managing COI mission-oriented mobile groups in heterogeneous mobile environments. A COI mobile group in this environment would consist of heterogeneous mobile entities such as communication-device-carried personnel/robots and aerial or ground vehicles operated by humans exhibiting not only quality of service (QoS) characters, e.g., competence and cooperativeness, but also social behaviors, e.g., connectivity, intimacy and honesty. A COI commander or a subtask leader must measure trust with both social and QoS cognition depending on mission task characteristics and/or trustee properties to ensure successful mission execution. In this paper, we present a dynamic hierarchical trust management protocol that can learn from past experiences and adapt to changing environment conditions, e.g., increasing misbehaving node population, evolving hostility and node density, etc. to enhance agility and maximize application performance. With trust-based misbehaving node detection as an application, we demonstrate how our proposed COI trust management protocol is resilient to node failure, disconnection and capture events, and can help maximize application performance in terms of minimizing false negatives and positives in the presence of mobile nodes exhibiting vastly distinct QoS and social behaviors.
The popularity of mobile devices and the enormous number of third party mobile applications in the market have naturally lead to several vulnerabilities being identified and abused. This is coupled with the immaturity of intrusion detection system (IDS) technology targeting mobile devices. In this paper we propose a modular host-based IDS framework for mobile devices that uses behavior analysis to profile applications on the Android platform. Anomaly detection can then be used to categorize malicious behavior and alert users. The proposed system accommodates different detection algorithms, and is being tested at a major telecom operator in North America. This paper highlights the architecture, findings, and lessons learned.
IP spoofing based DDoS attack that relies on multiple compromised hosts in the network to attack the victim. In IP spoofing, IP addresses can be forged easily, thus, makes it difficult to filter illegitimate packets from legitimate one out of aggregated traffic. A number of mitigation techniques have been proposed in the literature by various researchers. The conventional Hop Count Filtering or probabilistic Hop Count Filtering based research work indicates the problems related to higher computational time and low detection rate of illegitimate packets. In this paper, DPHCF-RTT technique has been implemented and analysed for variable number of hops. Goal is to improve the limitations of Conventional HCF or Probabilistic HCF techniques by maximizing the detection rate of illegitimate packets and reducing the computation time. It is based on distributed probabilistic HCF using RTT. It has been used in an intermediate system. It has the advantage for resolving the problems of network bandwidth jam and host resources exhaustion. MATLAB 7 has been used for simulations. Mitigation of DDoS attacks have been done through DPHCF-RTT technique. It has been shown a maximum detection rate up to 99% of malicious packets.
Distributed optimization is an emerging research topic. Agents in the network solve the problem by exchanging information which depicts people's consideration on a optimization problem in real lives. In this paper, we introduce two algorithms in continuous-time to solve distributed optimization problems with equality constraints where the cost function is expressed as a sum of functions and where each function is associated to an agent. We firstly construct a continuous dynamic system by utilizing the Lagrangian function and then show that the algorithm is locally convergent and globally stable under certain conditions. Then, we modify the Lagrangian function and re-construct the dynamic system to prove that the new algorithm will be convergent under more relaxed conditions. At last, we present some simulations to prove our theoretical results.
In this paper, we consider distributed algorithm based on a continuous-time multi-agent system to solve constrained optimization problem. The global optimization objective function is taken as the sum of agents' individual objective functions under a group of convex inequality function constraints. Because the local objective functions cannot be explicitly known by all the agents, the problem has to be solved in a distributed manner with the cooperation between agents. Here we propose a continuous-time distributed gradient dynamics based on the KKT condition and Lagrangian multiplier methods to solve the optimization problem. We show that all the agents asymptotically converge to the same optimal solution with the help of a constructed Lyapunov function and a LaSalle invariance principle of hybrid systems.
Nowadays, our surrounding environment is more and more scattered with various types of sensors. Due to their intrinsic properties and representation formats, they form small islands isolated from each other. In order to increase interoperability and release their full capabilities, we propose to represent devices descriptions including data and service invocation with a common model allowing to compose mashups of heterogeneous sensors. Pushing this paradigm further, we also propose to augment service descriptions with a discovery protocol easing automatic assimilation of knowledge. In this work, we describe the architecture supporting what can be called a Semantic Sensor Web-of-Things. As proof of concept, we apply our proposal to the domain of smart buildings, composing a novel ontology covering heterogeneous sensing, actuation and service invocation. Our architecture also emphasizes on the energetic aspect and is optimized for constrained environments.
By exploiting the communication infrastructure among the sensors, actuators, and control systems, attackers may compromise the security of smart-grid systems, with techniques such as denial-of-service (DoS) attack, random attack, and data-injection attack. In this paper, we present a mathematical model of the system to study these pitfalls and propose a robust security framework for the smart grid. Our framework adopts the Kalman filter to estimate the variables of a wide range of state processes in the model. The estimates from the Kalman filter and the system readings are then fed into the χ2-detector or the proposed Euclidean detector. The χ2-detector is a proven effective exploratory method used with the Kalman filter for the measurement of the relationship between dependent variables and a series of predictor variables. The χ2-detector can detect system faults/attacks, such as DoS attack, short-term, and long-term random attacks. However, the studies show that the χ2-detector is unable to detect the statistically derived false data-injection attack. To overcome this limitation, we prove that the Euclidean detector can effectively detect such a sophisticated injection attack.
The popularity and adoption of smart phones has greatly stimulated the spread of mobile malware, especially on the popular platforms such as Android. In light of their rapid growth, there is a pressing need to develop effective solutions. However, our defense capability is largely constrained by the limited understanding of these emerging mobile malware and the lack of timely access to related samples. In this paper, we focus on the Android platform and aim to systematize or characterize existing Android malware. Particularly, with more than one year effort, we have managed to collect more than 1,200 malware samples that cover the majority of existing Android malware families, ranging from their debut in August 2010 to recent ones in October 2011. In addition, we systematically characterize them from various aspects, including their installation methods, activation mechanisms as well as the nature of carried malicious payloads. The characterization and a subsequent evolution-based study of representative families reveal that they are evolving rapidly to circumvent the detection from existing mobile anti-virus software. Based on the evaluation with four representative mobile security software, our experiments show that the best case detects 79.6% of them while the worst case detects only 20.2% in our dataset. These results clearly call for the need to better develop next-generation anti-mobile-malware solutions.
Detecting and preventing attacks before they compromise a system can be done using acceptance testing, redundancy based mechanisms, and using external consistency checking such external monitoring and watchdog processes. Diversity-based adjudication, is a step towards an oracle that uses knowable behavior of a healthy system. That approach, under best circumstances, is able to detect even zero-day attacks. In this approach we use functionally equivalent but in some way diverse components and we compare their output vectors and reactions for a given input vector. This paper discusses practical relevance of this approach in the context of recent web-service attacks.