Visible to the public Biblio

Found 1474 results

Filters: First Letter Of Title is D  [Clear All Filters]
2017-02-23
K. Xiangying, C. Yanhui.  2015.  "Dynamic Remote Attestation Based on Concerns". 2015 8th International Symposium on Computational Intelligence and Design (ISCID). 1:76-80.

Based on the analysis relationships of challenger and attestation in remote attestation process, we propose a dynamic remote attestation model based on concerns. By combines the trusted root and application of dynamic credible monitoring module, Convert the Measurement for all load module of integrity measurement architecture into the Attestation of the basic computing environments, dynamic credible monitoring module, and request service software module. Discuss the rationality of the model. The model used Merkel hash tree to storage applications software integrity metrics, both to protect the privacy of the other party application software, and also improves the efficiency of remote attestation. Experimental prototype system shows that the model can verify the dynamic behavior of the software, to make up for the lack of static measure.

H. M. Ruan, M. H. Tsai, Y. N. Huang, Y. H. Liao, C. L. Lei.  2015.  "Discovery of De-identification Policies Considering Re-identification Risks and Information Loss". 2015 10th Asia Joint Conference on Information Security. :69-76.

In data analysis, it is always a tough task to strike the balance between the privacy and the applicability of the data. Due to the demand for individual privacy, the data are being more or less obscured before being released or outsourced to avoid possible privacy leakage. This process is so called de-identification. To discuss a de-identification policy, the most important two aspects should be the re-identification risk and the information loss. In this paper, we introduce a novel policy searching method to efficiently find out proper de-identification policies according to acceptable re-identification risk while retaining the information resided in the data. With the UCI Machine Learning Repository as our real world dataset, the re-identification risk can therefore be able to reflect the true risk of the de-identified data under the de-identification policies. Moreover, using the proposed algorithm, one can then efficiently acquire policies with higher information entropy.

A. Soliman, L. Bahri, B. Carminati, E. Ferrari, S. Girdzijauskas.  2015.  "DIVa: Decentralized identity validation for social networks". 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). :383-391.

Online Social Networks exploit a lightweight process to identify their users so as to facilitate their fast adoption. However, such convenience comes at the price of making legitimate users subject to different threats created by fake accounts. Therefore, there is a crucial need to empower users with tools helping them in assigning a level of trust to whomever they interact with. To cope with this issue, in this paper we introduce a novel model, DIVa, that leverages on mining techniques to find correlations among user profile attributes. These correlations are discovered not from user population as a whole, but from individual communities, where the correlations are more pronounced. DIVa exploits a decentralized learning approach and ensures privacy preservation as each node in the OSN independently processes its local data and is required to know only its direct neighbors. Extensive experiments using real-world OSN datasets show that DIVa is able to extract fine-grained community-aware correlations among profile attributes with average improvements up to 50% than the global approach.

A. Rahmani, A. Amine, M. R. Hamou.  2015.  "De-identification of Textual Data Using Immune System for Privacy Preserving in Big Data". 2015 IEEE International Conference on Computational Intelligence Communication Technology. :112-116.

With the growing observed success of big data use, many challenges appeared. Timeless, scalability and privacy are the main problems that researchers attempt to figure out. Privacy preserving is now a highly active domain of research, many works and concepts had seen the light within this theme. One of these concepts is the de-identification techniques. De-identification is a specific area that consists of finding and removing sensitive information either by replacing it, encrypting it or adding a noise to it using several techniques such as cryptography and data mining. In this report, we present a new model of de-identification of textual data using a specific Immune System algorithm known as CLONALG.

2017-02-21
A. Pramanik, S. P. Maity.  2015.  "DPCM-quantized block-based compressed sensing of images using Robbins Monro approach". 2015 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE). :18-21.

Compressed Sensing or Compressive Sampling is the process of signal reconstruction from the samples obtained at a rate far below the Nyquist rate. In this work, Differential Pulse Coded Modulation (DPCM) is coupled with Block Based Compressed Sensing (CS) reconstruction with Robbins Monro (RM) approach. RM is a parametric iterative CS reconstruction technique. In this work extensive simulation is done to report that RM gives better performance than the existing DPCM Block Based Smoothed Projected Landweber (SPL) reconstruction technique. The noise seen in Block SPL algorithm is not much evident in this non-parametric approach. To achieve further compression of data, Lempel-Ziv-Welch channel coding technique is proposed.

2017-02-14
J. Brynielsson, R. Sharma.  2015.  "Detectability of low-rate HTTP server DoS attacks using spectral analysis". 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). :954-961.

Denial-of-Service (DoS) attacks pose a threat to any service provider on the internet. While traditional DoS flooding attacks require the attacker to control at least as much resources as the service provider in order to be effective, so-called low-rate DoS attacks can exploit weaknesses in careless design to effectively deny a service using minimal amounts of network traffic. This paper investigates one such weakness found within version 2.2 of the popular Apache HTTP Server software. The weakness concerns how the server handles the persistent connection feature in HTTP 1.1. An attack simulator exploiting this weakness has been developed and shown to be effective. The attack was then studied with spectral analysis for the purpose of examining how well the attack could be detected. Similar to other papers on spectral analysis of low-rate DoS attacks, the results show that disproportionate amounts of energy in the lower frequencies can be detected when the attack is present. However, by randomizing the attack pattern, an attacker can efficiently reduce this disproportion to a degree where it might be impossible to correctly identify an attack in a real world scenario.

J. J. Li, P. Abbate, B. Vega.  2015.  "Detecting Security Threats Using Mobile Devices". 2015 IEEE International Conference on Software Quality, Reliability and Security - Companion. :40-45.

In our previous work [1], we presented a study of using performance escalation to automatic detect Distributed Denial of Service (DDoS) types of attacks. We propose to enhance the work of security threat detection by using mobile phones as the detector to identify outliers of normal traffic patterns as threats. The mobile solution makes detection portable to any services. This paper also shows that the same detection method works for advanced persistent threats.

N. Nakagawa, Y. Teshigawara, R. Sasaki.  2015.  "Development of a Detection and Responding System for Malware Communications by Using OpenFlow and Its Evaluation". 2015 Fourth International Conference on Cyber Security, Cyber Warfare, and Digital Forensic (CyberSec). :46-51.

Advanced Persistent Threat (APT) attacks, which have become prevalent in recent years, are classified into four phases. These are initial compromise phase, attacking infrastructure building phase, penetration and exploration phase, and mission execution phase. The malware on infected terminals attempts various communications on and after the attacking infrastructure building phase. In this research, using OpenFlow technology for virtual networks, we developed a system of identifying infected terminals by detecting communication events of malware communications in APT attacks. In addition, we prevent information fraud by using OpenFlow, which works as real-time path control. To evaluate our system, we executed malware infection experiments with a simulation tool for APT attacks and malware samples. In these experiments, an existing network using only entry control measures was prepared. As a result, we confirm the developed system is effective.

A. Oprea, Z. Li, T. F. Yen, S. H. Chin, S. Alrwais.  2015.  "Detection of Early-Stage Enterprise Infection by Mining Large-Scale Log Data". 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks. :45-56.

Recent years have seen the rise of sophisticated attacks including advanced persistent threats (APT) which pose severe risks to organizations and governments. Additionally, new malware strains appear at a higher rate than ever before. Since many of these malware evade existing security products, traditional defenses deployed by enterprises today often fail at detecting infections at an early stage. We address the problem of detecting early-stage APT infection by proposing a new framework based on belief propagation inspired from graph theory. We demonstrate that our techniques perform well on two large datasets. We achieve high accuracy on two months of DNS logs released by Los Alamos National Lab (LANL), which include APT infection attacks simulated by LANL domain experts. We also apply our algorithms to 38TB of web proxy logs collected at the border of a large enterprise and identify hundreds of malicious domains overlooked by state-of-the-art security products.

S. Zafar, M. B. Tiwana.  2015.  "Discarded hard disks ??? A treasure trove for cybercriminals: A case study of recovered sensitive data from a discarded hard disk" 2015 First International Conference on Anti-Cybercrime (ICACC). :1-6.

The modern malware poses serious security threats because of its evolved capability of using staged and persistent attack while remaining undetected over a long period of time to perform a number of malicious activities. The challenge for malicious actors is to gain initial control of the victim's machine by bypassing all the security controls. The most favored bait often used by attackers is to deceive users through a trusting or interesting email containing a malicious attachment or a malicious link. To make the email credible and interesting the cybercriminals often perform reconnaissance activities to find background information on the potential target. To this end, the value of information found on the discarded or stolen storage devices is often underestimated or ignored. In this paper, we present the partial results of analysis of one such hard disk that was purchased from the open market. The data found on the disk contained highly sensitive personal and organizational data. The results from the case study will be useful in not only understanding the involved risk but also creating awareness of related threats.

P. Hu, H. Li, H. Fu, D. Cansever, P. Mohapatra.  2015.  "Dynamic defense strategy against advanced persistent threat with insiders". 2015 IEEE Conference on Computer Communications (INFOCOM). :747-755.

The landscape of cyber security has been reformed dramatically by the recently emerging Advanced Persistent Threat (APT). It is uniquely featured by the stealthy, continuous, sophisticated and well-funded attack process for long-term malicious gain, which render the current defense mechanisms inapplicable. A novel design of defense strategy, continuously combating APT in a long time-span with imperfect/incomplete information on attacker's actions, is urgently needed. The challenge is even more escalated when APT is coupled with the insider threat (a major threat in cyber-security), where insiders could trade valuable information to APT attacker for monetary gains. The interplay among the defender, APT attacker and insiders should be judiciously studied to shed insights on a more secure defense system. In this paper, we consider the joint threats from APT attacker and the insiders, and characterize the fore-mentioned interplay as a two-layer game model, i.e., a defense/attack game between defender and APT attacker and an information-trading game among insiders. Through rigorous analysis, we identify the best response strategies for each player and prove the existence of Nash Equilibrium for both games. Extensive numerical study further verifies our analytic results and examines the impact of different system configurations on the achievable security level.

2017-02-13
S. V. Trivedi, M. A. Hasamnis.  2015.  "Development of platform using NIOS II soft core processor for image encryption and decryption using AES algorithm". 2015 International Conference on Communications and Signal Processing (ICCSP). :1147-1151.

In our digital world internet is a widespread channel for transmission of information. Information that is transmitted can be in form of messages, images, audios and videos. Due to this escalating use of digital data exchange cryptography and network security has now become very important in modern digital communication network. Cryptography is a method of storing and transmitting data in a particular form so that only those for whom it is intended can read and process it. The term cryptography is most often associated with scrambling plaintext into ciphertext. This process is called as encryption. Today in industrial processes images are very frequently used, so it has become essential for us to protect the confidential image data from unauthorized access. In this paper Advanced Encryption Standard (AES) which is a symmetric algorithm is used for encryption and decryption of image. Performance of Advanced Encryption Standard algorithm is further enhanced by adding a key stream generator W7. NIOS II soft core processor is used for implementation of encryption and decryption algorithm. A system is designed with the help of SOPC (System on programmable chip) builder tool which is available in QUARTUS II (Version 10.1) environment using NIOS II soft core processor. Developed single core system is implemented using Altera DE2 FPGA board (Cyclone II EP2C35F672). Using MATLAB the image is read and then by using DWT (Discrete Wavelet Transform) the image is compressed. The image obtained after compression is now given as input to proposed AES encryption algorithm. The output of encryption algorithm is given as input to decryption algorithm in order to get back the original image. The implementation of which is done on the developed single core platform using NIOS II processor. Finally the output is analyzed in MATLAB by plotting histogram of original and encrypted image.

2017-02-10
Andrew Clark, University of Washington, Quanyan Zhu, University of Illinois at Urbana-Champaign, Radha Poovendran, University of Washington, Tamer Başar, University of Illinois at Urbana-Champaign.  2012.  Deceptive Routing in Relay Networks. Conference on Decision and Game Theory for Security.

Physical-layer and MAC-layer defense mechanisms against jamming attacks are often inherently reactive to experienced delay and loss of throughput after being attacked. In this paper, we study a proactive defense mechanism against jamming in multi-hop relay networks, in which one or more network sources introduce a deceptive network flow along a disjoint routing path. The deceptive mechanism leverages strategic jamming behaviors, causing the attacker to expend resources on targeting deceptive flows and thereby reducing the impact on real network trac. We use a two-stage game model to obtain deception strategies at Stackelberg equilibrium for sel sh and altruistic nodes. The equilibrium solutions are illustrated and corroborated through a simulation study.

2017-02-09
Anshuman Mishra, University of Illinois at Urbana-Champaign, Cedric Langbort, University of Illinois at Urbana-Champaign, Geir Dullerud, University of Illinois at Urbana-Champaign.  2015.  Decentralized Control of Linear Switched Nested Systms With l2-Induced Norm Performance.

This paper considers a decentralized switched control problem where exact conditions for controller synthesis are obtained in the form of semidefinite programming (SDP). The formulation involves a discrete-time switched linear plant that has a nested structure, and whose system matrices switch between a finite number of values according to finite-state automation. The goal of this paper is to synthesize a commensurately nested switched controller to achieve a desired level of 2-induced norm performance. The nested structures of both plant and controller are characterized by block lower-triangular system matrices. For this setup, exact conditions are provided for the existence of a finite path-dependent synthesis. These include conditions for the completion of scaling matrices obtained through an extended matrix completion lemma.When individual controller dimensions are chosen at least as large as the plant, these conditions reduce to a set of linear matrix inequalities. The completion lemma also provides an algorithm to complete closed-loop scaling matrices, leading to inequalities for  ontroller synthesis that are solvable either algebraically or numerically through SDP.

Published in IEEE Transactions on Control of Network Systems, volume 2, issue 4, December 2015.

2017-02-03
Bahman Gharesifard, Behrouz Touri, Tamer Başar, University of Illinois at Urbana-Champaign, Cedric Langbort, University of Illinois at Urbana-Champaign.  2013.  Distributed Optimization by Myopic Strategic Interactions and the Price of Heterogeneity. 52nd Conference on Decision and Control.

This paper is concerned with the tradeoffs between low-cost heterogenous designs and optimality. We study a class of constrained myopic strategic games on networks which approximate the solutions to a constrained quadratic optimization problem; the Nash equilibria of these games can be found using best-response dynamical systems, which only use local information. The notion of price of heterogeneity captures the quality of our approximations. This notion relies on the structure and the strength of the interconnections between agents. We study the stability properties of these dynamical systems and demonstrate their complex characteristics, including abundance of equilibria on graphs with high sparsity and heterogeneity. We also introduce the novel notions of social equivalence and social dominance, and show some of their interesting implications, including their correspondence to consensus. Finally, using a classical result of Hirsch [1], we fully characterize the stability of these dynamical systems for the case of star graphs with asymmetric interactions. Various examples illustrate our results.

2017-02-02
Quanyan Zhu, University of Illinois at Urbana-Champaign, Andrew Clark, Radha Poovendran, Tamer Başar, University of Illinois at Urbana-Champaign.  2013.  Deployment and Exploitation of Deceptive Honeybots in Social Networks. 52nd Conference on Decision and Control.

As social networking sites such as Facebook and Twitter are becoming increasingly popular, a growing number of malicious attacks, such as phishing and malware, are exploiting them. Among these attacks, social botnets have sophisticated infrastructure that leverages compromised user accounts, known as bots, to automate the creation of new social networking accounts for spamming and malware propagation. Traditional defense mechanisms are often passive and reactive to non-zero-day attacks. In this paper, we adopt a proactive approach for enhancing security in social networks by infiltrating botnets with honeybots. We propose an integrated system named SODEXO which can be interfaced with social networking sites for creating deceptive honeybots and leveraging them for gaining information from botnets. We establish a Stackelberg game framework to capture strategic interactions between honeybots and botnets, and use quantitative methods to understand the tradeoffs of honeybots for their deployment and exploitation in social networks. We design a protection and alert system that integrates both microscopic and macroscopic models of honeybots and optimally determines the security strategies for honeybots. We corroborate the proposed mechanism with extensive simulations and comparisons with passive defenses.

Sabita Maharjan, Quanyan Zhu, University of Illinois at Urbana-Champaign, Yan Zhang, Stein Gjessing, Tamer Başar, University of Illinois at Urbana-Champaign.  2013.  Dependable Demand Response Management in Smart Grid: A Stackelberg Game Approach. IEEE Transactions on Smart Grid. 4(1)

Demand ResponseManagement (DRM) is a key component in the smart grid to effectively reduce power generation costs and user bills. However, it has been an open issue to address the DRM problem in a network of multiple utility companies and consumers where every entity is concerned about maximizing its own benefit. In this paper, we propose a Stackelberg game between utility companies and end-users to maximize the revenue of each utility company and the payoff of each user. We derive analytical results for the Stackelberg equilibrium of the game and prove that a unique solution exists.We develop a distributed algorithm which converges to the equilibrium with only local information available for both utility companies and end-users. Though DRM helps to facilitate the reliability of power supply, the smart grid can be succeptible to privacy and security issues because of communication links between the utility companies and the consumers. We study the impact of an attacker who can manipulate the price information from the utility companies.We also propose a scheme based on the concept of shared reserve power to improve the grid reliability and ensure its dependability.

Quanyan Zhu, University of Illinois at Urbana-Champaign, Andrew Clark, Radha Poovendran, Tamer Başar, University of Illinois at Urbana-Champaign.  2012.  Deceptive Routing Games. 51st IEEE Conference on Decision and Control.

The use of a shared medium leaves wireless networks, including mobile ad hoc and sensor networks, vulnerable to jamming attacks. In this paper, we introduce a jamming defense mechanism for multiple-path routing networks based on maintaining deceptive flows, consisting of fake packets, between a source and a destination. An adversary observing a deceptive flow will expend energy on disrupting the fake packets, allowing the real data packets to arrive at the destination unharmed. We model this deceptive flow-based defense within a multi-stage stochastic game framework between the network nodes, which choose a routing path and flow rates for the real and fake data, and an adversary, which chooses which fraction of each flow to target at each hop. We develop an efficient, distributed procedure for computing the optimal routing at each hop and the optimal flow allocation at the destination. Furthermore, by studying the equilibria of the game, we quantify the benefit arising from deception, as reflected in an increase in the valid throughput. Our results are demonstrated via a simulation study.

2017-01-05
Aiping Xiong, Robert W. Proctor, Weining Yang, Ninghui Li.  2017.  Is Domain Highlighting Actually Helpful in Identifying Phishing Webpages? Human Factors: The Journal of the Human Factors and Ergonomics Society.

Objective: To evaluate the effectiveness of domain highlighting in helping users identify whether webpages are legitimate or spurious.

Background: As a component of the URL, a domain name can be overlooked. Consequently, browsers highlight the domain name to help users identify which website they are visiting. Nevertheless, few studies have assessed the effectiveness of domain highlighting, and the only formal study confounded highlighting with instructions to look at the address bar. 

Method: We conducted two phishing detection experiments. Experiment 1 was run online: Participants judged the legitimacy of webpages in two phases. In phase one, participants were to judge the legitimacy based on any information on the webpage, whereas phase two they were to focus on the address bar. Whether the domain was highlighted was also varied.  Experiment 2 was conducted similarly but with participants in a laboratory setting, which allowed tracking of fixations.

Results: Participants differentiated the legitimate and fraudulent webpages better than chance. There was some benefit of attending to the address bar, but domain highlighting did not provide effective protection against phishing attacks. Analysis of eye-gaze fixation measures was in agreement with the task performance, but heat-map results revealed that participants’ visual attention was attracted by the highlighted domains.

Conclusion: Failure to detect many fraudulent webpages even when the domain was highlighted implies that users lacked knowledge of webpage security cues or how to use those cues.

2016-12-14
Quanyan Zhu, University of Illinois at Urbana-Champaign, Tamer Başar, University of Illinois at Urbana-Champaign.  2012.  A Dynamic Game-Theoretic Approach to Resilient Control System Design for Cascading Failures. International Conference on High Confidence Networked Systems.

The migration of many current critical infrastructures, such as power grids and transportations systems, into open publicnetworks has posed many challenges in control systems. Modern control systems face uncertainties not only from the physical world but also from the cyber space. In this paper, we propose a hybrid game-theoretic approach to investigate the coupling between cyber security policy and robust control design. We study in detail the case of cascading failures in industrial control systems and provide a set of coupled optimality criteria in the linear-quadratic case. This approach can be further extended to more general cases of parallel cascading failures.

Zhenqi Huang, University of Illinois at Urbana-Champaign, Yu Wang, University of Illinois at Urbana-Champaign.  2016.  Differential Privacy, Entropy and Security in Distributed Control of Cyber Physical Systems.

The concept of differential privacy stems from the study of private query of datasets. In this work, we apply this concept to discrete-time, linear distributed control systems in which agents need to maintain privacy of certain preferences, while sharing information for better system-level performance. The system has N agents operating in a shared environment that couples their dynamics. We show that for stable systems the performance grows as O(T3/Nε2), where T is the time horizon and ε is the differential privacy parameter. Next, we study lower-bounds in terms of the Shannon entropy of the minimal mean square estimate of the system’s private initial state from noisy communications between an agent and the server. We show that for any of noise-adding differentially private mechanism, then the Shannon entropy is at least nN(1−ln(ε/2)), where n is the dimension of the system, and t he lower bound is achieved by a Laplace-noise-adding mechanism. Finally, we study the problem of keeping the objective functions of individual agents differentially private in the context of cloud-based distributed optimization. The result shows a trade-off between the privacy of objective functions and the performance of the distributed optimization algorithm with noise.

Presented at the Joint Trust and Security/Science of Security Seminar, April 26, 2016.

2016-11-17
2016-10-24