Visible to the public Biblio

Found 632 results

Filters: First Letter Of Title is F  [Clear All Filters]
2023-09-20
Samia, Bougareche, Soraya, Zehani, Malika, Mimi.  2022.  Fashion Images Classification using Machine Learning, Deep Learning and Transfer Learning Models. 2022 7th International Conference on Image and Signal Processing and their Applications (ISPA). :1—5.
Fashion is the way we present ourselves which mainly focuses on vision, has attracted great interest from computer vision researchers. It is generally used to search fashion products in online shopping malls to know the descriptive information of the product. The main objectives of our paper is to use deep learning (DL) and machine learning (ML) methods to correctly identify and categorize clothing images. In this work, we used ML algorithms (support vector machines (SVM), K-Nearest Neirghbors (KNN), Decision tree (DT), Random Forest (RF)), DL algorithms (Convolutionnal Neurals Network (CNN), AlexNet, GoogleNet, LeNet, LeNet5) and the transfer learning using a pretrained models (VGG16, MobileNet and RestNet50). We trained and tested our models online using google colaboratory with Tensorflow/Keras and Scikit-Learn libraries that support deep learning and machine learning in Python. The main metric used in our study to evaluate the performance of ML and DL algorithms is the accuracy and matrix confusion. The best result for the ML models is obtained with the use of ANN (88.71%) and for the DL models is obtained for the GoogleNet architecture (93.75%). The results obtained showed that the number of epochs and the depth of the network have an effect in obtaining the best results.
Salsabila, Hanifah, Mardhiyah, Syafira, Budiarto Hadiprakoso, Raden.  2022.  Flubot Malware Hybrid Analysis on Android Operating System. 2022 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS). :202—206.
The rising use of smartphones each year is matched by the development of the smartphone's operating system, Android. Due to the immense popularity of the Android operating system, many unauthorized users (in this case, the attackers) wish to exploit this vulnerability to get sensitive data from every Android user. The flubot malware assault, which happened in 2021 and targeted Android devices practically globally, is one of the attacks on Android smartphones. It was known at the time that the flubot virus stole information, particularly from banking applications installed on the victim's device. To prevent this from happening again, we research the signature and behavior of flubot malware. In this study, a hybrid analysis will be conducted on three samples of flubot malware that are available on the open-source Hatching Triage platform. Using the Android Virtual Device (AVD) as the primary environment for malware installation, the analysis was conducted with the Android Debug Bridge (ADB) and Burpsuite as supporting tools for dynamic analysis. During the static analysis, the Mobile Security Framework (MobSF) and the Bytecode Viewer were used to examine the source code of the three malware samples. Analysis of the flubot virus revealed that it extracts or drops dex files on the victim's device, where the file is the primary malware. The Flubot virus will clone the messaging application or Short Message Service (SMS) on the default device. Additionally, we discovered a form of flubot malware that operates as a Domain Generation Algorithm (DGA) and communicates with its Command and Control (C&C) server.
2023-09-07
Kulba, Vladimir, Sirotyuk, Vladimir.  2022.  Formalized Models and Methods for Building Efficient Digital Information Funds of Intellectual Property. 2022 15th International Conference Management of large-scale system development (MLSD). :1–5.
The goals, objectives and criteria of the effectiveness of the creation, maintenance and use of the Digital Information Fund of Intellectual Property (DIFIP) are considered. A formalized methodology is proposed for designing DIFIPs, increasing its efficiency and quality, based on a set of interconnected models, methods and algorithms for analysis, synthesis and normalization distributed information management of DIFIP's structure; classification of databases users of patent and scientific and technical information; synthesis of optimal logical structures of the DIFIP database and thematic databases; assessing the quality of the database and ensuring the required level of data security.
2023-09-01
Ye, Jiao.  2022.  A fuzzy decision tree reasoning method for network forensics analysis. 2022 World Automation Congress (WAC). :41—45.
As an important branch of computer forensics, network forensics technology, whether abroad or at home, is in its infancy. It mainly focuses on the research on the framework of some forensics systems or some local problems, and has not formed a systematic theory, method and system. In order to improve the network forensics sys-tem, have a relatively stable and correct model for refer-ence, ensure the authenticity and credibility of network fo-rensics from the forensics steps, provide professional and non professional personnel with a standard to measure the availability of computer network crime investigation, guide the current network forensics process, and promote the gradual maturity of network forensics theories and methods, This paper presents a fuzzy decision tree reason-ing method for network forensics analysis.
2023-08-25
Padmavathi, G., Shanmugapriya, D., Asha, S..  2022.  A Framework to Detect the Malicious Insider Threat in Cloud Environment using Supervised Learning Methods. 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). :354—358.
A malicious insider threat is more vulnerable to an organization. It is necessary to detect the malicious insider because of its huge impact to an organization. The occurrence of a malicious insider threat is less but quite destructive. So, the major focus of this paper is to detect the malicious insider threat in an organization. The traditional insider threat detection algorithm is not suitable for real time insider threat detection. A supervised learning-based anomaly detection technique is used to classify, predict and detect the malicious and non-malicious activity based on highest level of anomaly score. In this paper, a framework is proposed to detect the malicious insider threat using supervised learning-based anomaly detection. It is used to detect the malicious insider threat activity using One-Class Support Vector Machine (OCSVM). The experimental results shows that the proposed framework using OCSVM performs well and detects the malicious insider who obtain huge anomaly score than a normal user.
Utomo, Rio Guntur, Yahya, Farashazillah, Almarshad, Fahdah, Wills, Gary B.  2022.  Factors Affecting Information Assurance for Big Data. 2022 1st International Conference on Software Engineering and Information Technology (ICoSEIT). :1–5.
Big Data is a concept used in various sectors today, including the government sector in the Smart Government initiative. With a large amount of structured and unstructured data being managed, information assurance becomes important in adopting Big Data. However, so far, no research has focused on information assurance for Big Data. This paper identified information assurance factors for Big Data. This research used the systematic snapshot mapping approach to examine factors relating to information assurance from the literature related to Big Data from 2011 through 2021. The data extraction process in gathering 15 relevant papers. The findings revealed ten factors influencing the information assurance implementation for Big Data, with the security factor becoming the most concentrated factor with 18 sub-factors. The findings are expected to serve as a foundation for adopting information assurance for Big Data to develop an information assurance framework for Smart Government.
2023-08-11
Kumar, A Vijaya, Bhavana, Kollipara, Yamini, Cheedella.  2022.  Fully Homomorphic Encryption for Data Security Over Cloud. 2022 6th International Conference on Electronics, Communication and Aerospace Technology. :782—787.
From the past few years cloud services are so popular and are being used by many people from various domains for various purposes such as data storage, e-mails, backing up data and much more. While there were many options to perform such things why did people choose cloud? The answer is clouds are more flexible, convenient, reliable and efficient. Coming to security of data over cloud, it is secure to store data over cloud rather than storing data locally as there is chance of some computer breakdown or any natural disaster may also occur. There are also many threats for data security over cloud namely data breaching, lack of access-key management and much more. As the data has been processed and being stored online for various purposes, there is a clear requirement for data security. Many organizations face various challenges while storing their data over cloud such as data leakages, account hijacking, insufficient credentials and so on. So to overcome these challenges and safeguard the data, various encryption techniques were implemented. However, even though encryption is used, the data still needs to be decrypted in order to do any type of operation. As a result, we must choose a manner in which the data can be analyzed, searched for, or used in any other way without needing to be decoded. So, the objective is to introduce a technique that goes right for the above conditions mentioned and for data security over cloud.
Reddy, H Manohar, P C, Sajimon, Sankaran, Sriram.  2022.  On the Feasibility of Homomorphic Encryption for Internet of Things. 2022 IEEE 8th World Forum on Internet of Things (WF-IoT). :1—6.
Homomorphic encryption (HE) facilitates computing over encrypted data without using the secret keys. It is currently inefficient for practical implementation on the Internet of Things (IoT). However, the performance of these HE schemes may increase with optimized libraries and hardware capabilities. Thus, implementing and analyzing HE schemes and protocols on resource-constrained devices is essential to deriving optimized and secure schemes. This paper develops an energy profiling framework for homomorphic encryption on IoT devices. In particular, we analyze energy consumption and performance such as CPU and Memory utilization and execution time of numerous HE schemes using SEAL and HElib libraries on the Raspberry Pi 4 hardware platform and study energy-performance-security trade-offs. Our analysis reveals that HE schemes can incur a maximum of 70.07% in terms of energy consumption among the libraries. Finally, we provide guidelines for optimization of Homomorphic Encryption by leveraging multi-threading and edge computing capabilities for IoT applications. The insights obtained from this study can be used to develop secure and resource-constrained implementation of Homomorphic encryption depending on the needs of IoT applications.
2023-07-31
Legrand, Antoine, Macq, Benoît, De Vleeschouwer, Christophe.  2022.  Forward Error Correction Applied to JPEG-XS Codestreams. 2022 IEEE International Conference on Image Processing (ICIP). :3723—3727.
JPEG-XS offers low complexity image compression for applications with constrained but reasonable bit-rate, and low latency. Our paper explores the deployment of JPEG-XS on lossy packet networks. To preserve low latency, Forward Error Correction (FEC) is envisioned as the protection mechanism of interest. Although the JPEG-XS codestream is not scalable in essence, we observe that the loss of a codestream fraction impacts the decoded image quality differently, depending on whether this codestream fraction corresponds to codestream headers, to coefficient significance information, or to low/high frequency data. Hence, we propose a rate-distortion optimal unequal error protection scheme that adapts the redundancy level of Reed-Solomon codes according to the rate of channel losses and the type of information protected by the code. Our experiments demonstrate that, at 5% loss rates, it reduces the Mean Squared Error by up to 92% and 65%, compared to a transmission without and with optimal but equal protection, respectively.
Guo, Yaqiong, Zhou, Peng, Lu, Xin, Sun, Wangshu, Sun, Jiasai.  2022.  A Fuzzy Multi-Identity Based Signature. 2022 Tenth International Conference on Advanced Cloud and Big Data (CBD). :219—223.
Identity based digital signature is an important research topic of public key cryptography, which can effectively guarantee the authentication, integrity and unforgeability of data. In this paper, a new fuzzy multi-identity based signature scheme is proposed. It is proved that the scheme is existentially unforgeable against adaptively chosen message attack, and the security of the signature scheme can be reduced to CDH assumption. The storage cost and the communication overhead are small, therefore the new fuzzy multi-identity based signature (FMIBS) scheme can be implemented efficiently.
Abdaoui, Abderrazak, Erbad, Aiman, Al-Ali, Abdulla Khalid, Mohamed, Amr, Guizani, Mohsen.  2022.  Fuzzy Elliptic Curve Cryptography for Authentication in Internet of Things. IEEE Internet of Things Journal. 9:9987—9998.
The security and privacy of the network in Internet of Things (IoT) systems are becoming more critical as we are more dependent on smart systems. Considering that packets are exchanged between the end user and the sensing devices, it is then important to ensure the security, privacy, and integrity of the transmitted data by designing a secure and a lightweight authentication protocol for IoT systems. In this article, in order to improve the authentication and the encryption in IoT systems, we present a novel method of authentication and encryption based on elliptic curve cryptography (ECC) using random numbers generated by fuzzy logic. We evaluate our novel key generation method by using standard randomness tests, such as: frequency test, frequency test with mono block, run test, discrete Fourier transform (DFT) test, and advanced DFT test. Our results show superior performance compared to existing ECC based on shift registers. In addition, we apply some attack algorithms, such as Pollard’s \textbackslashrho and Baby-step Giant-step, to evaluate the vulnerability of the proposed scheme.
2023-07-28
Bhande, Sapana A, Chandrakar, V. K..  2022.  Fuzzy Logic based Static Synchronous Series Compensator (SSSC) to enhance Power System Security. 2022 IEEE IAS Global Conference on Emerging Technologies (GlobConET). :667—672.
In today's power market, it's vital to keep electrical energy affordable to the vast majority of people while maintaining the highest degree of dependability. Due to which, the transmission network must operate beyond transfer limitations, generating congestion on transmission lines. These transmission line difficulties can be alleviated with the use of reactive power adjustment based on FACTS devices. Using a fuzzy tuned Static Synchronous Series Compensator [SSSC], this research proposes a novel method for calculating the effective damping oscillation control signals. The performance of the SSSC is compared to that of fuzzy logic-based controllers using PI controllers. According to the simulation results, the SSSC with fuzzy logic control effectively improves power flow under disrupted conditions
Reddy, V. Nagi, Gayathri, T., Nyamathulla, S K, Shaik, Nazma Sultana.  2022.  Fuzzy Logic Based WSN with High Packet Success Rate and Security. 2022 IEEE International Conference on Current Development in Engineering and Technology (CCET). :1—5.
Considering the evidence that conditions accept a considerable place in each of the structures, owing to limited assets available at each sensor center, it is a difficult problem. Vitality safety is the primary concern in many of the implementations in remote sensor hubs. This is critical as the improvement in the lifetime of the device depends primarily on restricting the usage of vitality in sensor hubs. The rationing and modification of the usage of vitality are of the most serious value in this context. In a remote sensor arrangement, the fundamental test is to schedule measurements for the least use of vitality. These classification frameworks are used to frame the classes in the structure and help efficiently use the strength that burdens out the lifespan of the network. Besides, the degree of the center was taken into account in this work considering the measurement of cluster span as an improvement to the existing methods. The crucial piece of leeway of this suggested approach on affair clustering using fuzzy logic is which can increase the lifespan of the system by reducing the problem area problem word.
Khunchai, Seree, Kruekaew, Adool, Getvongsa, Natthapong.  2022.  A Fuzzy Logic-Based System of Abnormal Behavior Detection Using PoseNet for Smart Security System. 2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). :912—915.
This paper aims to contribute towards creating ambient abnormal behavior detection for smart security system from real-time human pose estimation using fuzzy-based systems. Human poses from keypoint detected by pose estimation model are transformed to as angle positions of the axis between human bodies joints comparing to reference point in the axis x to deal with problem of the position change occurred when an individual move in the image. Also, the article attempts to resolve the problem of the ambiguity interpreting the poses with triangular fuzzy logic-based system that determines the detected individual behavior and compares to the poses previously learnt, trained, and recorded by the system. The experiment reveals that the accuracy of the system ranges between 90.75% (maximum) and 84% (minimum). This means that if the accuracy of the system at 85%. The system can be applied to guide future research for designing automatic visual human behavior detection systems.
2023-07-21
R, Sowmiya, G, Sivakamasundari, V, Archana.  2022.  Facial Emotion Recognition using Deep Learning Approach. 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS). :1064—1069.
Human facial emotion recognition pays a variety of applications in society. The basic idea of Facial Emotion Recognition is to map the different facial emotions to a variety of emotional states. Conventional Facial Emotion Recognition consists of two processes: extracting the features and feature selection. Nowadays, in deep learning algorithms, Convolutional Neural Networks are primarily used in Facial Emotion Recognition because of their hidden feature extraction from the images. Usually, the standard Convolutional Neural Network has simple learning algorithms with finite feature extraction layers for extracting information. The drawback of the earlier approach was that they validated only the frontal view of the photos even though the image was obtained from different angles. This research work uses a deep Convolutional Neural Network along with a DenseNet-169 as a backbone network for recognizing facial emotions. The emotion Recognition dataset was used to recognize the emotions with an accuracy of 96%.
Sivasangari, A., Gomathi, R. M., Anandhi, T., Roobini, Roobini, Ajitha, P..  2022.  Facial Recognition System using Decision Tree Algorithm. 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC). :1542—1546.
Face recognition technology is widely employed in a variety of applications, including public security, criminal identification, multimedia data management, and so on. Because of its importance for practical applications and theoretical issues, the facial recognition system has received a lot of attention. Furthermore, numerous strategies have been offered, each of which has shown to be a significant benefit in the field of facial and pattern recognition systems. Face recognition still faces substantial hurdles in unrestricted situations, despite these advancements. Deep learning techniques for facial recognition are presented in this paper for accurate detection and identification of facial images. The primary goal of facial recognition is to recognize and validate facial features. The database consists of 500 color images of people that have been pre-processed and features extracted using Linear Discriminant Analysis. These features are split into 70 percent for training and 30 percent for testing of decision tree classifiers for the computation of face recognition system performance.
Sadikoğlu, Fahreddin M., Idle Mohamed, Mohamed.  2022.  Facial Expression Recognition Using CNN. 2022 International Conference on Artificial Intelligence in Everything (AIE). :95—99.
Facial is the most dynamic part of the human body that conveys information about emotions. The level of diversity in facial geometry and facial look makes it possible to detect various human expressions. To be able to differentiate among numerous facial expressions of emotion, it is crucial to identify the classes of facial expressions. The methodology used in this article is based on convolutional neural networks (CNN). In this paper Deep Learning CNN is used to examine Alex net architectures. Improvements were achieved by applying the transfer learning approach and modifying the fully connected layer with the Support Vector Machine(SVM) classifier. The system succeeded by achieving satisfactory results on icv-the MEFED dataset. Improved models achieved around 64.29 %of recognition rates for the classification of the selected expressions. The results obtained are acceptable and comparable to the relevant systems in the literature provide ideas a background for further improvements.
Shiomi, Takanori, Nomiya, Hiroki, Hochin, Teruhisa.  2022.  Facial Expression Intensity Estimation Considering Change Characteristic of Facial Feature Values for Each Facial Expression. 2022 23rd ACIS International Summer Virtual Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD-Summer). :15—21.
Facial expression intensity, which quantifies the degree of facial expression, has been proposed. It is calculated based on how much facial feature values change compared to an expressionless face. The estimation has two aspects. One is to classify facial expressions, and the other is to estimate their intensity. However, it is difficult to do them at the same time. There- fore, in this work, the estimation of intensity and the classification of expression are separated. We suggest an explicit method and an implicit method. In the explicit one, a classifier determines which types of expression the inputs are, and each regressor determines its intensity. On the other hand, in the implicit one, we give zero values or non-zero values to regressors for each type of facial expression as ground truth, depending on whether or not an input image is the correct facial expression. We evaluated the two methods and, as a result, found that they are effective for facial expression recognition.
Gao, Kai, Cheng, Xiangyu, Huang, Hao, Li, Xunhao, Yuan, Tingyu, Du, Ronghua.  2022.  False Data Injection Attack Detection in a Platoon of CACC in RSU. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1324—1329.
Intelligent connected vehicle platoon technology can reduce traffic congestion and vehicle fuel. However, attacks on the data transmitted by the platoon are one of the primary challenges encountered by the platoon during its travels. The false data injection (FDI) attack can lead to road congestion and even vehicle collisions, which can impact the platoon. However, the complexity of the cellular - vehicle to everything (C-V2X) environment, the single source of the message and the poor data processing capability of the on board unit (OBU) make the traditional detection methods’ success rate and response time poor. This study proposes a platoon state information fusion method using the communication characteristics of the platoon in C-V2X and proposes a novel platoon intrusion detection model based on this fusion method combined with sequential importance sampling (SIS). The SIS is a measured strategy of Monte Carlo integration sampling. Specifically, the method takes the status information of the platoon members as the predicted value input. It uses the leader vehicle status information as the posterior probability of the observed value to the current moment of the platoon members. The posterior probabilities of the platoon members and the weights of the platoon members at the last moment are used as input to update the weights of the platoon members at the current moment and obtain the desired platoon status information at the present moment. Moreover, it compares the status information of the platoon members with the desired status information to detect attacks on the platoon. Finally, the effectiveness of the method is demonstrated by simulation.
Elmoghrapi, Asma N., Bleblo, Ahmed, Younis, Younis A..  2022.  Fog Computing or Cloud Computing: a Study. 2022 International Conference on Engineering & MIS (ICEMIS). :1—6.
Cloud computing is a new term that refers to the service provisioned over the Internet. It is considered one of the foremost prevailing standards within the Data Innovation (IT) industry these days. It offers capable handling and capacity assets as on-demand administrations at diminished fetched, and progressed productivity. It empowers sharing computing physical assets among cloud computing tents and offers on-demand scaling with taken toll effectiveness. Moreover, cloud computing plays an important role in data centers because they house virtually limitless computational and storage capacities that businesses and end-users can access and use via the Internet. In the context of cloud computing, fog computing refers to bringing services to the network’s edge. Fog computing gives cloud-like usefulness, such as information capacity space, systems, and compute handling control, yet with a more noteworthy scope and nearness since fog nodes are found close to d-user edge gadgets, leveraging assets and diminishing inactivity. The concepts of cloud computing and fog computing will be explored in this paper, and their features will be contrasted to determine the differences between them. Over 25 factors have been used to compare them.
Muhammad Nabi, Masooma, Shah, Munam Ali.  2022.  A Fuzzy Approach to Trust Management in Fog Computing. 2022 24th International Multitopic Conference (INMIC). :1—6.

The Internet of Things (IoT) technology has revolutionized the world where anything is smartly connected and is accessible. The IoT makes use of cloud computing for processing and storing huge amounts of data. In some way, the concept of fog computing has emerged between cloud and IoT devices to address the issue of latency. When a fog node exchanges data for completing a particular task, there are many security and privacy risks. For example, offloading data to a rogue fog node might result in an illegal gathering or modification of users' private data. In this paper, we rely on trust to detect and detach bad fog nodes. We use a Mamdani fuzzy method and we consider a hospital scenario with many fog servers. The aim is to identify the malicious fog node. Metrics such as latency and distance are used in evaluating the trustworthiness of each fog server. The main contribution of this study is identifying how fuzzy logic configuration could alter the trust value of fog nodes. The experimental results show that our method detects the bad fog device and establishes its trustworthiness in the given scenario.

Mukherjee, Pratyusa, Kumar Barik, Rabindra.  2022.  Fog-QKD:Towards secure geospatial data sharing mechanism in geospatial fog computing system based on Quantum Key Distribution. 2022 OITS International Conference on Information Technology (OCIT). :485—490.

Geospatial fog computing system offers various benefits as a platform for geospatial computing services closer to the end users, including very low latency, good mobility, precise position awareness, and widespread distribution. In recent years, it has grown quickly. Fog nodes' security is susceptible to a number of assaults, including denial of service and resource abuse, because to their widespread distribution, complex network environments, and restricted resource availability. This paper proposes a Quantum Key Distribution (QKD)-based geospatial quantum fog computing environment that offers a symmetric secret key negotiation protocol that can preserve information-theoretic security. In QKD, after being negotiated between any two fog nodes, the secret keys can be given to several users in various locations to maintain forward secrecy and long-term protection. The new geospatial quantum fog computing environment proposed in this work is able to successfully withstand a variety of fog computing assaults and enhances information security.

2023-07-20
Shetty, Pallavi, Joshi, Kapil, Raman, Dr. Ramakrishnan, Rao, K. Naga Venkateshwara, Kumar, Dr. A. Vijaya, Tiwari, Mohit.  2022.  A Framework of Artificial Intelligence for the Manufacturing and Image Classification system. 2022 5th International Conference on Contemporary Computing and Informatics (IC3I). :1504—1508.
Artificial intelligence (AI) has been successfully employed in industries for decades, beginning with the invention of expert systems in the 1960s and continuing through the present ubiquity of deep learning. Data-driven AI solutions have grown increasingly common as a means of supporting ever-more complicated industrial processes owing to the accessibility of affordable computer and storage infrastructure. Despite recent optimism, implementing AI to smart industrial applications still offers major difficulties. The present paper gives an executive summary of AI methodologies with an emphasis on deep learning before detailing unresolved issues in AI safety, data privacy, and data quality — all of which are necessary for completely automated commercial AI systems.
Tomaras, Dimitrios, Tsenos, Michail, Kalogeraki, Vana.  2022.  A Framework for Supporting Privacy Preservation Functions in a Mobile Cloud Environment. 2022 23rd IEEE International Conference on Mobile Data Management (MDM). :286—289.
The problem of privacy protection of trajectory data has received increasing attention in recent years with the significant grow in the volume of users that contribute trajectory data with rich user information. This creates serious privacy concerns as exposing an individual's privacy information may result in attacks threatening the user's safety. In this demonstration we present TP$^\textrm3$ a novel practical framework for supporting trajectory privacy preservation in Mobile Cloud Environments (MCEs). In TP$^\textrm3$, non-expert users submit their trajectories and the system is responsible to determine their privacy exposure before sharing them to data analysts in return for various benefits, e.g. better recommendations. TP$^\textrm3$ makes a number of contributions: (a) It evaluates the privacy exposure of the users utilizing various privacy operations, (b) it is latency-efficient as it implements the privacy operations as serverless functions which can scale automatically to serve an increasing number of users with low latency, and (c) it is practical and cost-efficient as it exploits the serverless model to adapt to the demands of the users with low operational costs for the service provider. Finally, TP$^\textrm3$'s Web-UI provides insights to the service provider regarding the performance and the respective revenue from the service usage, while enabling the user to submit the trajectories with recommended preferences of privacy.
2023-07-18
Lin, Decong, Cao, Hongbo, Tian, Chunzi, Sun, Yongqi.  2022.  The Fast Paillier Decryption with Montgomery Modular Multiplication Based on OpenMP. 2022 IEEE 13th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP). :1—6.
With the increasing awareness of privacy protection and data security, people’s concerns over the confidentiality of sensitive data still limit the application of distributed artificial intelligence. In fact, a new encryption form, called homomorphic encryption(HE), has achieved a balance between security and operability. In particular, one of the HE schemes named Paillier has been adopted to protect data privacy in distributed artificial intelligence. However, the massive computation of modular multiplication in Paillier greatly affects the speed of encryption and decryption. In this paper, we propose a fast CRT-Paillier scheme to accelerate its decryption process. We first introduce the Montgomery algorithm to the CRT-Paillier to improve the process of the modular exponentiation, and then compute the modular exponentiation in parallel by using OpenMP. The experimental results show that our proposed scheme has greatly heightened its decryption speed while preserving the same security level. Especially, when the key length is 4096-bit, its speed of decryption is about 148 times faster than CRT-Paillier.