Biblio
Many organizations process and store classified data within their computer networks. Owing to the value of data that they hold; such organizations are more vulnerable to targets from adversaries. Accordingly, the sensitive organizations resort to an ‘air-gap’ approach on their networks, to ensure better protection. However, despite the physical and logical isolation, the attackers have successfully manifested their capabilities by compromising such networks; examples of Stuxnet and Agent.btz in view. Such attacks were possible due to the successful manipulation of human beings. It has been observed that to build up such attacks, persistent reconnaissance of the employees, and their data collection often forms the first step. With the rapid integration of social media into our daily lives, the prospects for data-seekers through that platform are higher. The inherent risks and vulnerabilities of social networking sites/apps have cultivated a rich environment for foreign adversaries to cherry-pick personal information and carry out successful profiling of employees assigned with sensitive appointments. With further targeted social engineering techniques against the identified employees and their families, attackers extract more and more relevant data to make an intelligent picture. Finally, all the information is fused to design their further sophisticated attacks against the air-gapped facility for data pilferage. In this regard, the success of the adversaries in harvesting the personal information of the victims largely depends upon the common errors committed by legitimate users while on duty, in transit, and after their retreat. Such errors would keep on repeating unless these are aligned with their underlying human behaviors and weaknesses, and the requisite mitigation framework is worked out.
Consensus is a basic building block in distributed systems for a myriad of related problems that involve agreement. For asynchronous networks, consensus has been proven impossible, and is well known as Augean task. Failure Detectors (FDs) have since emerged as a possible remedy, able to solve consensus in asynchronous systems under certain assumptions. With the increasing use of asynchronous, wireless Internet of Things (IoT) technologies, such as IEEE 802.15.4/6LoWPAN, the demand of applications that require some form of reliability and agreement is on the rise. What was missing so far is an FD that can operate under the tight constraints offered by Low Power and Lossy Networks (LLNs) without compromising the efficiency of the network. We present 6LoFD, an FD specifically aimed at energy and memory efficient operation in small scale, unreliable networks, and evaluate its working principles by using an ns-3 implementation of 6LoFD.