Schell, Oleg, Kneib, Marcel.
2020.
VALID: Voltage-Based Lightweight Intrusion Detection for the Controller Area Network. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :225–232.
The Controller Area Network (CAN), a broadcasting bus for intra-vehicle communication, does not provide any security mechanisms, although it is implemented in almost every vehicle. Attackers can exploit this issue, transmit malicious messages unnoticeably and cause severe harm. As the utilization of Message Authentication Codes (MACs) is only possible to a limited extent in resource-constrained systems, the focus is put on the development of Intrusion Detection Systems (IDSs). Due to their simple idea of operation, current developments are increasingly utilizing physical signal properties like voltages to realize these systems. Although the feasibility for CAN-based networks could be demonstrated, the least approaches consider the constrained resource-availability of vehicular hardware. To close this gap, we present Voltage-Based Lightweight Intrusion Detection (VALID), which provides physics-based intrusion detection with low resource requirements. By utilizing solely the individual voltage levels on the network during communication, the system detects unauthorized message transmissions without any sophisticated sampling approaches and feature calculations. Having performed evaluations on data from two real vehicles, we show that VALID is not only able to detect intrusions with an accuracy of 99.54 %, but additionally is capable of identifying the attack source reliably. These properties make VALID one of the most lightweight intrusion detection approaches that is ready-to-use, as it can be easily implemented on hardware already installed in vehicles and does not require any further components. Additionally, this allows existing platforms to be retrofitted and vehicular security systems to be improved and extended.
Bruno Korbar, Dartmouth College, Jim Blythe, University of Southern California, Ross Koppel, University of Pennsylvania, Vijay Kothari, Dartmouth College, Sean Smith, Dartmouth College.
2016.
Validating an Agent-Based Model of Human Password Behavior. AAAI-16 Workshop on Artificial Intelligence for Cyber Security .
Effective reasoning about the impact of security policy decisions requires understanding how human users actually behave, rather than assuming desirable but incorrect behavior. Simulation could help with this reasoning, but it requires building computational models of the relevant human behavior and validating that these models match what humans actually do. In this paper we describe our progress on building agent-based models of human behavior with passwords, and we demonstrate how these models reproduce phenomena
shown in the empirical literature.
Hadj, M. A. El, Erradi, M., Khoumsi, A., Benkaouz, Y..
2018.
Validation and Correction of Large Security Policies: A Clustering and Access Log Based Approach. 2018 IEEE International Conference on Big Data (Big Data). :5330-5332.
In big data environments with big number of users and high volume of data, we need to manage the corresponding huge number of security policies. Due to the distributed management of these policies, they may contain several anomalies, such as conflicts and redundancies, which may lead to both safety and availability problems. The distributed systems guided by such security policies produce a huge number of access logs. Due to potential security breaches, the access logs may show the presence of non-allowed accesses. This may also be a consequence of conflicting rules in the security policies. In this paper, we present an ongoing work on developing an environment for verifying and correcting security policies. To make the approach efficient, an access log is used as input to determine suspicious parts of the policy that should be considered. The approach is also made efficient by clustering the policy and the access log and considering separately the obtained clusters. The clustering technique and the use of access log significantly reduces the complexity of the suggested approach, making it scalable for large amounts of data.
de Sousa, Flavia Domingues, Battiston, Alexandre, PIERFEDERICI, Serge, Meibody-Tabar, Farid.
2021.
Validation of the standstill magnetization strategy of a FeCrCo-based Variable Flux Memory Machine. 2021 24th International Conference on Electrical Machines and Systems (ICEMS). :536–541.
The use of AlNiCo alloys as the low coercive force (LCF) magnet in Variable Flux Memory Machines has been largely discussed in the literature, but similar magnetic materials as FeCrCo are still little explored. This paper proposes the study of a standstill magnetization strategy of a Variable Flux Memory Machine composed by a FeCrCo-based cylindrical rotor. An inverter in DC/DC mode is proposed for injecting short-time currents along the magnetization axis aiming the regulation of the magnetization state of the FeCrCo. A methodology for validating results obtained is defined from the estimation of the remanence and the excitation field characterizing the behavior of the internal recoil lines of the magnet used in the rotor. A study of the armature reaction affecting the machine when q-axis currents supply the machine is proposed by simulation.
Shu, H., Shen, X., Xu, L., Guo, Q., Sun, H..
2018.
A Validity Test Methodfor Transmission Betweens and Transmission Sections Based on Chain Attack Analysisand Line Outage Distribution Factors. 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2). :1-6.
The identification of transmission sections is used to improve the efficiency of monitoring the operation of the power grid. In order to test the validity of transmission sections identified, an assessment process is necessary. In addition, Transmission betweenness, an index for finding the key transmission lines in the power grid, should also be verified. In this paper, chain attack is assumed to check the weak links in the grid, thus verifying the transmission betweenness implemented for the system. Moreover, the line outage distribution factors (LODFs) are used to quantify the change of power flow when the leading line in transmission sections breaks down, so that the validity of transmission sections can be proved. Case studies based on IEEE 39 and IEEE 118 -bus system proved the effectiveness of the proposed method.
Wu, N., Farokhi, F., Smith, D., Kaafar, M. A..
2020.
The Value of Collaboration in Convex Machine Learning with Differential Privacy. 2020 IEEE Symposium on Security and Privacy (SP). :304–317.
In this paper, we apply machine learning to distributed private data owned by multiple data owners, entities with access to non-overlapping training datasets. We use noisy, differentially-private gradients to minimize the fitness cost of the machine learning model using stochastic gradient descent. We quantify the quality of the trained model, using the fitness cost, as a function of privacy budget and size of the distributed datasets to capture the trade-off between privacy and utility in machine learning. This way, we can predict the outcome of collaboration among privacy-aware data owners prior to executing potentially computationally-expensive machine learning algorithms. Particularly, we show that the difference between the fitness of the trained machine learning model using differentially-private gradient queries and the fitness of the trained machine model in the absence of any privacy concerns is inversely proportional to the size of the training datasets squared and the privacy budget squared. We successfully validate the performance prediction with the actual performance of the proposed privacy-aware learning algorithms, applied to: financial datasets for determining interest rates of loans using regression; and detecting credit card frauds using support vector machines.
Wang, Weina, Ying, Lei, Zhang, Junshan.
2016.
The Value of Privacy: Strategic Data Subjects, Incentive Mechanisms and Fundamental Limits. Proceedings of the 2016 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Science. :249–260.
We study the value of data privacy in a game-theoretic model of trading private data, where a data collector purchases private data from strategic data subjects (individuals) through an incentive mechanism. The private data of each individual represents her knowledge about an underlying state, which is the information that the data collector desires to learn. Different from most of the existing work on privacy-aware surveys, our model does not assume the data collector to be trustworthy. Then, an individual takes full control of its own data privacy and reports only a privacy-preserving version of her data. In this paper, the value of ε units of privacy is measured by the minimum payment of all nonnegative payment mechanisms, under which an individual's best response at a Nash equilibrium is to report the data with a privacy level of ε. The higher ε is, the less private the reported data is. We derive lower and upper bounds on the value of privacy which are asymptotically tight as the number of data subjects becomes large. Specifically, the lower bound assures that it is impossible to use less amount of payment to buy ε units of privacy, and the upper bound is given by an achievable payment mechanism that we designed. Based on these fundamental limits, we further derive lower and upper bounds on the minimum total payment for the data collector to achieve a given learning accuracy target, and show that the total payment of the designed mechanism is at most one individual's payment away from the minimum.
Cody, Tyler, Adams, Stephen, Beling, Peter, Freeman, Laura.
2022.
On Valuing the Impact of Machine Learning Faults to Cyber-Physical Production Systems. 2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS). :1—6.
Machine learning (ML) has been applied in prognostics and health management (PHM) to monitor and predict the health of industrial machinery. The use of PHM in production systems creates a cyber-physical, omni-layer system. While ML offers statistical improvements over previous methods, and brings statistical models to bear on new systems and PHM tasks, it is susceptible to performance degradation when the behavior of the systems that ML is receiving its inputs from changes. Natural changes such as physical wear and engineered changes such as maintenance and rebuild procedures are catalysts for performance degradation, and are both inherent to production systems. Drawing from data on the impact of maintenance procedures on ML performance in hydraulic actuators, this paper presents a simulation study that investigates how long it takes for ML performance degradation to create a difference in the throughput of serial production system. In particular, this investigation considers the performance of an ML model learned on data collected before a rebuild procedure is conducted on a hydraulic actuator and an ML model transfer learned on data collected after the rebuild procedure. Transfer learning is able to mitigate performance degradation, but there is still a significant impact on throughput. The conclusion is drawn that ML faults can have drastic, non-linear effects on the throughput of production systems.
Heindorf, Stefan, Potthast, Martin, Stein, Benno, Engels, Gregor.
2016.
Vandalism Detection in Wikidata. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. :327–336.
Wikidata is the new, large-scale knowledge base of the Wikimedia Foundation. Its knowledge is increasingly used within Wikipedia itself and various other kinds of information systems, imposing high demands on its integrity. Wikidata can be edited by anyone and, unfortunately, it frequently gets vandalized, exposing all information systems using it to the risk of spreading vandalized and falsified information. In this paper, we present a new machine learning-based approach to detect vandalism in Wikidata. We propose a set of 47 features that exploit both content and context information, and we report on 4 classifiers of increasing effectiveness tailored to this learning task. Our approach is evaluated on the recently published Wikidata Vandalism Corpus WDVC-2015 and it achieves an area under curve value of the receiver operating characteristic, ROC-AUC, of 0.991. It significantly outperforms the state of the art represented by the rule-based Wikidata Abuse Filter (0.865 ROC-AUC) and a prototypical vandalism detector recently introduced by Wikimedia within the Objective Revision Evaluation Service (0.859 ROC-AUC).
Mustafa, Ahmed Shamil, Hamdi, Mustafa Maad, Mahdi, Hussain Falih, Abood, Mohammed Salah.
2020.
VANET: Towards Security Issues Review. 2020 IEEE 5th International Symposium on Telecommunication Technologies (ISTT). :151–156.
The Ad-hoc vehicle networks (VANETs) recently stressed communications and networking technologies. VANETs vary from MANETs in tasks, obstacles, system architecture and operation. Smart vehicles and RSUs communicate through unsafe wireless media. By nature, they are vulnerable to threats that can lead to life-threatening circumstances. Due to potentially bad impacts, security measures are needed to recognize these VANET assaults. In this review paper of VANET security, the new VANET approaches are summarized by addressing security complexities. Second, we're reviewing these possible threats and literature recognition mechanisms. Finally, the attacks and their effects are identified and clarified and the responses addressed together.
Tomandl, A., Herrmann, D., Fuchs, K.-P., Federrath, H., Scheuer, F..
2014.
VANETsim: An open source simulator for security and privacy concepts in VANETs. High Performance Computing Simulation (HPCS), 2014 International Conference on. :543-550.
Aside from massive advantages in safety and convenience on the road, Vehicular Ad Hoc Networks (VANETs) introduce security risks to the users. Proposals of new security concepts to counter these risks are challenging to verify because of missing real world implementations of VANETs. To fill this gap, we introduce VANETsim, an event-driven simulation platform, specifically designed to investigate application-level privacy and security implications in vehicular communications. VANETsim focuses on realistic vehicular movement on real road networks and communication between the moving nodes. A powerful graphical user interface and an experimentation environment supports the user when setting up or carrying out experiments.
Pujar, Saurabh, Zheng, Yunhui, Buratti, Luca, Lewis, Burn, Morari, Alessandro, Laredo, Jim, Postlethwait, Kevin, Görn, Christoph.
2022.
Varangian: A Git Bot for Augmented Static Analysis. 2022 IEEE/ACM 19th International Conference on Mining Software Repositories (MSR). :766–767.
The complexity and scale of modern software programs often lead to overlooked programming errors and security vulnerabilities. Developers often rely on automatic tools, like static analysis tools, to look for bugs and vulnerabilities. Static analysis tools are widely used because they can understand nontrivial program behaviors, scale to millions of lines of code, and detect subtle bugs. However, they are known to generate an excess of false alarms which hinder their utilization as it is counterproductive for developers to go through a long list of reported issues, only to find a few true positives. One of the ways proposed to suppress false positives is to use machine learning to identify them. However, training machine learning models requires good quality labeled datasets. For this purpose, we developed D2A [3], a differential analysis based approach that uses the commit history of a code repository to create a labeled dataset of Infer [2] static analysis output.
Nadi, Sarah, Krüger, Stefan.
2016.
Variability Modeling of Cryptographic Components: Clafer Experience Report. Proceedings of the Tenth International Workshop on Variability Modelling of Software-intensive Systems. :105–112.
Software systems need to use cryptography to protect any sensitive data they collect. However, there are various classes of cryptographic components (e.g., ciphers, digests, etc.), each suitable for a specific purpose. Additionally, each class of such components comes with various algorithms and configurations. Finding the right combination of algorithms and correct settings to use is often difficult. We believe that using variability modeling to model these algorithms, their relationships, and restrictions can help non-experts navigate this complex domain. In this paper, we report on our experience modeling cryptographic components in Clafer, a modeling language that combines feature modeling and meta-modeling. We discuss design decisions we took as well as the challenges we ran into. Our work helps expand variability modeling into new domains and sheds lights on modeling requirements that appear in practice.
Geetha, C. R., Basavaraju, S., Puttamadappa, C..
2013.
Variable load image steganography using multiple edge detection and minimum error replacement method. 2013 IEEE Conference on Information Communication Technologies. :53—58.
This paper proposes a steganography method using the digital images. Here, we are embedding the data which is to be secured into the digital image. Human Visual System proved that the changes in the image edges are insensitive to human eyes. Therefore we are using edge detection method in steganography to increase data hiding capacity by embedding more data in these edge pixels. So, if we can increase number of edge pixels, we can increase the amount of data that can be hidden in the image. To increase the number of edge pixels, multiple edge detection is employed. Edge detection is carried out using more sophisticated operator like canny operator. To compensate for the resulting decrease in the PSNR because of increase in the amount of data hidden, Minimum Error Replacement [MER] method is used. Therefore, the main goal of image steganography i.e. security with highest embedding capacity and good visual qualities are achieved. To extract the data we need the original image and the embedding ratio. Extraction is done by taking multiple edges detecting the original image and the data is extracted corresponding to the embedding ratio.
Jian Wang, Lin Mei, Yi Li, Jian-Ye Li, Kun Zhao, Yuan Yao.
2014.
Variable Window for Outlier Detection and Impulsive Noise Recognition in Range Images. Cluster, Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM International Symposium on. :857-864.
To improve comprehensive performance of denoising range images, an impulsive noise (IN) denoising method with variable windows is proposed in this paper. Founded on several discriminant criteria, the principles of dropout IN detection and outlier IN detection are provided. Subsequently, a nearest non-IN neighbors searching process and an Index Distance Weighted Mean filter is combined for IN denoising. As key factors of adapatablity of the proposed denoising method, the sizes of two windows for outlier INs detection and INs denoising are investigated. Originated from a theoretical model of invader occlusion, variable window is presented for adapting window size to dynamic environment of each point, accompanying with practical criteria of adaptive variable window size determination. Experiments on real range images of multi-line surface are proceeded with evaluations in terms of computational complexity and quality assessment with comparison analysis among a few other popular methods. It is indicated that the proposed method can detect the impulsive noises with high accuracy, meanwhile, denoise them with strong adaptability with the help of variable window.
Zhang, Hao, Zhang, Tao, Chen, Huajin.
2017.
Variance Analysis of Pixel-Value Differencing Steganography. Proceedings of the 2017 International Conference on Cryptography, Security and Privacy. :28–32.
As the adaptive steganography selects edge and texture area for loading, the theoretical analysis is limited by modeling difficulty. This paper introduces a novel method to study pixel-value difference (PVD) embedding scheme. First, the difference histogram values of cover image are used as parameters, and a variance formula for PVD stego noise is obtained. The accuracy of this formula has been verified through analysis with standard pictures. Second, the stego noise is divided into six kinds of pixel regions, and the regional noise variances are utilized to compare the security between PVD and least significant bit matching (LSBM) steganography. A mathematical conclusion is presented that, with the embedding capacity less than 2.75 bits per pixel, PVD is always not safer than LSBM under the same embedding rate, regardless of region selection. Finally, 10000 image samples are used to observe the validity of mathematical conclusion. For most images and regions, the data are also shown to be consistent with the prior judgment. Meanwhile, the cases of exception are analyzed seriously, and are found to be caused by randomness of pixel selection and abandoned blocks in PVD scheme. In summary, the unity of theory and practice completely indicates the effectiveness of our new method.
Xin, Wei, Wang, M., Shao, Shuai, Wang, Z., Zhang, Tao.
2015.
A variant of schnorr signature scheme for path-checking in RFID-based supply chains. 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). :2608–2613.
The RFID technology has attracted considerable attention in recent years, and brings convenience to supply chain management. In this paper, we concentrate on designing path-checking protocols to check the valid paths in supply chains. By entering a valid path, the check reader can distinguish whether the tags have gone through the path or not. Based on modified schnorr signature scheme, we provide a path-checking method to achieve multi-signatures and final verification. In the end, we conduct security and privacy analysis to the scheme.
Srinate, Panpet, Chiewthanakul, Bhichate.
2018.
A variant of the Schnorr signature using an elliptic curve over a field of characteristic two. 2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE). :1–5.
Digital signature over elliptic curve is one of the most important applications of security because it is effective. Recently, it has been developed and defined in the various standard of security. The application of the digital signature are signer authentication, data integrity, and non-repudiation. Currently, the requirements to implement authentication process on a computer hardware with limited resource such as energy, memory and computing power are increasing. The developer should consider these factors along with security factor for the effective implement on the computer hardware with limited resource. In this paper, we propose the Schnorr signature scheme using Koblitz curve over a field of characteristic two. The advantage of Schnorr signature scheme is a good combination with Koblitz curve over a field of characteristic two, therefore its arithmetic can be performed in any computer. Moreover, we use Double-and-Add scalar multiplication to reduce time in the process of systems. In addition, this paper shows a result of time in the process of the system to compare the performance of the Schnorr signature scheme on Koblitz curve using Double-andAdd scalar multiplication with the Schnorr signature scheme on Koblitz curve using typical scalar multiplication. The result of this study is that both systems working correctly. However, the Schnorr signature scheme on Koblitz curve using Double-andAdd performs better in time efficiency than of Schnorr signature scheme on Koblitz curve using typical scalar multiplication.
Bouzar-Benlabiod, L., Méziani, L., Rubin, S. H., Belaidi, K., Haddar, N. E..
2019.
Variational Encoder-Decoder Recurrent Neural Network (VED-RNN) for Anomaly Prediction in a Host Environment. 2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI). :75–82.
Intrusion detection systems (IDS) are important security tools. NIDS monitors network's traffic and HIDS filters local one. HIDS are often based on anomaly detection. Several studies deal with anomaly detection using system-call traces. In this paper, we propose an anomaly detection and prediction approach. System-call traces, invoked by the running programs, are analyzed in real time. For prediction, we use a Sequence to sequence model based on variational encoder-decoder (VED) and variants of Recurrent Neural Networks (RNN), these architectures showed their performance on natural language processing. To make the analogy, we exploit the semantics behind the invoking order of system-calls that are then seen as sentences. A preprocessing phase is added to optimize the prediction model input data representation. A one-class classification is done to categorize the sequences into normal or abnormal. Tests are achieved on the ADFA-LD dataset and showed the advantage of the prediction for the intrusion detection/prediction task.
Hossain, F. S., Shintani, M., Inoue, M., Orailoglu, A..
2018.
Variation-Aware Hardware Trojan Detection through Power Side-Channel. 2018 IEEE International Test Conference (ITC). :1-10.
A hardware Trojan (HT) denotes the malicious addition or modification of circuit elements. The purpose of this work is to improve the HT detection sensitivity in ICs using power side-channel analysis. This paper presents three detection techniques in power based side-channel analysis by increasing Trojan-to-circuit power consumption and reducing the variation effect in the detection threshold. Incorporating the three proposed methods has demonstrated that a realistic fine-grain circuit partitioning and an improved pattern set to increase HT activation chances can magnify Trojan detectability.
Koch, S., John, M., Worner, M., Muller, A., Ertl, T..
2014.
VarifocalReader #x2014; In-Depth Visual Analysis of Large Text Documents. Visualization and Computer Graphics, IEEE Transactions on. 20:1723-1732.
Interactive visualization provides valuable support for exploring, analyzing, and understanding textual documents. Certain tasks, however, require that insights derived from visual abstractions are verified by a human expert perusing the source text. So far, this problem is typically solved by offering overview-detail techniques, which present different views with different levels of abstractions. This often leads to problems with visual continuity. Focus-context techniques, on the other hand, succeed in accentuating interesting subsections of large text documents but are normally not suited for integrating visual abstractions. With VarifocalReader we present a technique that helps to solve some of these approaches' problems by combining characteristics from both. In particular, our method simplifies working with large and potentially complex text documents by simultaneously offering abstract representations of varying detail, based on the inherent structure of the document, and access to the text itself. In addition, VarifocalReader supports intra-document exploration through advanced navigation concepts and facilitates visual analysis tasks. The approach enables users to apply machine learning techniques and search mechanisms as well as to assess and adapt these techniques. This helps to extract entities, concepts and other artifacts from texts. In combination with the automatic generation of intermediate text levels through topic segmentation for thematic orientation, users can test hypotheses or develop interesting new research questions. To illustrate the advantages of our approach, we provide usage examples from literature studies.
Daughety, Nathan, Pendleton, Marcus, Xu, Shouhuai, Njilla, Laurent, Franco, John.
2021.
vCDS: A Virtualized Cross Domain Solution Architecture. MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM). :61–68.
With the paradigm shift to cloud-based operations, reliable and secure access to and transfer of data between differing security domains has never been more essential. A Cross Domain Solution (CDS) is a guarded interface which serves to execute the secure access and/or transfer of data between isolated and/or differing security domains defined by an administrative security policy. Cross domain security requires trustworthiness at the confluence of the hardware and software components which implement a security policy. Security components must be relied upon to defend against widely encompassing threats – consider insider threats and nation state threat actors which can be both onsite and offsite threat actors – to information assurance. Current implementations of CDS systems use suboptimal Trusted Computing Bases (TCB) without any formal verification proofs, confirming the gap between blind trust and trustworthiness. Moreover, most CDSs are exclusively operated by Department of Defense agencies and are not readily available to the commercial sectors, nor are they available for independent security verification. Still, more CDSs are only usable in physically isolated environments such as Sensitive Compartmented Information Facilities and are inconsistent with the paradigm shift to cloud environments. Our purpose is to address the question of how trustworthiness can be implemented in a remotely deployable CDS that also supports availability and accessibility to all sectors. In this paper, we present a novel CDS system architecture which is the first to use a formally verified TCB. Additionally, our CDS model is the first of its kind to utilize a computation-isolation approach which allows our CDS to be remotely deployable for use in cloud-based solutions.
Lira, Wallace, Gama, Fernando, Barbosa, Hivana, Alves, Ronnie, de Souza, Cleidson.
2016.
VCloud: Adding Interactiveness to Word Clouds for Knowledge Exploration in Large Unstructured Texts. Proceedings of the 31st Annual ACM Symposium on Applied Computing. :193–198.
The identification of relevant information in large text databases is a challenging task. One of the reasons is human beings' limitations in handling large volumes of data. A common solution for scavenging data from texts are word clouds. A word cloud illustrates word usage in a document by resizing individual words in documents proportionally to how frequently they appear. Even though word clouds are easy to understand, they are not particularly efficient, because they are static. In addition, the presented information lacks context, i.e., words are not explained and they may lead to radically erroneous interpretations. To tackle these problems we developed VCloud, a tool that allows the user to interact with word clouds, therefore allowing informative and interactive data exploration. Furthermore, our tool also allows one to compare two data sets presented as word clouds. We evaluated VCloud using real data about the evolution of gastritis research through the years. The papers indexed by Pubmed related to this medical context were selected for visualization and data analysis using VCloud. A domain expert explored these visualizations, being able to extract useful information from it. This illustrates how can VCloud be a valuable tool for visual text analytics.
Nashrudin, Muhamad Ridhwan Bin, Nasser, Abdullah B., Abdul-Qawy, Antar Shaddad H..
2021.
V-CRYPT: A Secure Visual Cryptography System. 2021 International Conference on Software Engineering Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM). :568–573.
Nowadays, peoples are very concerned about their data privacy. Hence, all the current security methods should be improved to stay relevant in this fast-growing technology world. Visual Cryptography (VC) is a cryptographic technique that using the image processing method. The implementation of VC can be varying and flexible to be applied to the system that requires an extra security precaution as it is one of the effective solutions in securing the data exchange between two or more parties. The main purpose of the development of V-CRYPT System is to improve the current VC technique and make it more complex in the encryption and decryption process. V-CRYPT system will let the user enter the key, then select the image that they want to encrypt, and the system will split the image into four shares: share0, share1, share2, share3. Each pixel of the image will be splatted into a smaller block of subpixels in each of the four shares and encrypted as two subpixels in each of the shares. The decryption will work only when the user selects all the shares, and the correct text key is entered. The system will superimpose all the shares and producing one perfect image. If the incorrect key is entered, the resulted image will be unidentified. The results show that V- CRYPT is a valuable alternative to existing methods where its security level is higher in terms of adding a secure key and complexity.
Zhang, Xin, Sun, Hongyu, He, Zhipeng, Gu, MianXue, Feng, Jingyu, Zhang, Yuqing.
2022.
VDBWGDL: Vulnerability Detection Based On Weight Graph And Deep Learning. 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :186–190.
Vulnerability detection has always been an essential part of maintaining information security, and the existing work can significantly improve the performance of vulnerability detection. However, due to the differences in representation forms and deep learning models, various methods still have some limitations. In order to overcome this defect, We propose a vulnerability detection method VDBWGDL, based on weight graphs and deep learning. Firstly, it accurately locates vulnerability-sensitive keywords and generates variant codes that satisfy vulnerability trigger logic and programmer programming style through code variant methods. Then, the control flow graph is sliced for vulnerable code keywords and program critical statements. The code block is converted into a vector containing rich semantic information and input into the weight map through the deep learning model. According to specific rules, different weights are set for each node. Finally, the similarity is obtained through the similarity comparison algorithm, and the suspected vulnerability is output according to different thresholds. VDBWGDL improves the accuracy and F1 value by 3.98% and 4.85% compared with four state-of-the-art models. The experimental results prove the effectiveness of VDBWGDL.
ISSN: 2325-6664