Biblio
Although RAID is a well-known technique to protect data against disk errors, it is vulnerable to silent data corruptions that cannot be detected by disk drives. Existing integrity protection schemes designed for RAID arrays often introduce high I/O overhead. Our key insight is that by properly designing an integrity protection scheme that adapts to the read/write characteristics of storage workloads, the I/O overhead can be significantly mitigated. In view of this, this paper presents a systematic study on I/O-efficient integrity protection against silent data corruptions in RAID arrays. We formalize an integrity checking model, and justify that a large proportion of disk reads can be checked with simpler and more I/O-efficient integrity checking mechanisms. Based on this integrity checking model, we construct two integrity protection schemes that provide complementary performance advantages for storage workloads with different user write sizes. We further propose a quantitative method for choosing between the two schemes in real-world scenarios. Our trace-driven simulation results show that with the appropriate integrity protection scheme, we can reduce the I/O overhead to below 15%.
By identifying memory pages that external I/O operations have modified, a proposed scheme blocks malicious injected code activation, accurately distinguishing an attack from legitimate code injection with negligible performance impact and no changes to the user application.
This research focuses on hyper visor security from holistic perspective. It centers on hyper visor architecture - the organization of the various subsystems which collectively compromise a virtualization platform. It holds that the path to a secure hyper visor begins with a big-picture focus on architecture. Unfortunately, little research has been conducted with this perspective. This study investigates the impact of monolithic and micro kernel hyper visor architectures on the size and scope of the attack surface. Six architectural features are compared: management API, monitoring interface, hyper calls, interrupts, networking, and I/O. These subsystems are core hyper visor components which could be used as attack vectors. Specific examples and three leading hyper visor platforms are referenced (ESXi for monolithic architecture; Xen and Hyper-V for micro architecture). The results describe the relative strengths and vulnerabilities of both types of architectures. It is concluded that neither design is more secure, since both incorporate security tradeoffs in core processes.
In this paper, parallelization and high performance computing are utilized to enable ultrafast transient stability analysis that can be used in a real-time environment to quickly perform “what-if” simulations involving system dynamics phenomena. EPRI's Extended Transient Midterm Simulation Program (ETMSP) is modified and enhanced for this work. The contingency analysis is scaled for large-scale contingency analysis using Message Passing Interface (MPI) based parallelization. Simulations of thousands of contingencies on a high performance computing machine are performed, and results show that parallelization over contingencies with MPI provides good scalability and computational gains. Different ways to reduce the Input/Output (I/O) bottleneck are explored, and findings indicate that architecting a machine with a larger local disk and maintaining a local file system significantly improve the scaling results. Thread-parallelization of the sparse linear solve is explored also through use of the SuperLU_MT library.
Voting among replicated data collection devices is a means to achieve dependable data delivery to the end-user in a hostile environment. Failures may occur during the data collection process: such as data corruptions by malicious devices and security/bandwidth attacks on data paths. For a voting system, how often a correct data is delivered to the user in a timely manner and with low overhead depicts the QoS. Prior works have focused on algorithm correctness issues and performance engineering of the voting protocol mechanisms. In this paper, we study the methods for autonomic management of device replication in the voting system to deal with situations where the available network bandwidth fluctuates, the fault parameters change unpredictably, and the devices have battery energy constraints. We treat the voting system as a `black-box' with programmable I/O behaviors. A management module exercises a macroscopic control of the voting box with situational inputs: such as application priorities, network resources, battery energy, and external threat levels.
In recent years, there has been a huge trend towards running network intensive applications, such as Internet servers and Cloud-based service in virtual environment, where multiple virtual machines (VMs) running on the same machine share the machine's physical and network resources. In such environment, the virtual machine monitor (VMM) virtualizes the machine's resources in terms of CPU, memory, storage, network and I/O devices to allow multiple operating systems running in different VMs to operate and access the network concurrently. A key feature of virtualization is live migration (LM) that allows transfer of virtual machine from one physical server to another without interrupting the services running in virtual machine. Live migration facilitates workload balancing, fault tolerance, online system maintenance, consolidation of virtual machines etc. However, live migration is still in an early stage of implementation and its security is yet to be evaluated. The security concern of live migration is a major factor for its adoption by the IT industry. Therefore, this paper uses the X.805 security standard to investigate attacks on live virtual machine migration. The analysis highlights the main source of threats and suggests approaches to tackle them. The paper also surveys and compares different proposals in the literature to secure the live migration.
This paper discusses strategies for I/O sharing in Multiple Independent Levels of Security (MILS) systems mostly deployed in the special environment of avionic systems. MILS system designs are promising approaches for handling the increasing complexity of functionally integrated systems, where multiple applications run concurrently on the same hardware platform. Such integrated systems, also known as Integrated Modular Avionics (IMA) in the aviation industry, require communication to remote systems located outside of the hosting hardware platform. One possible solution is to provide each partition, the isolated runtime environment of an application, a direct interface to the communication's hardware controller. Nevertheless, this approach requires a special design of the hardware itself. This paper discusses efficient system architectures for I/O sharing in the environment of high-criticality embedded systems and the exemplary analysis of Free scale's proprietary Data Path Acceleration Architecture (DPAA) with respect to generic hardware requirements. Based on this analysis we also discuss the development of possible architectures matching with the MILS approach. Even though the analysis focuses on avionics it is equally applicable to automotive architectures such as Auto SAR.
This paper presents a credibility model to assess trust of Web services. The model relies on consumers' ratings whose accuracy can be questioned due to different biases. A category of consumers known as strict are usually excluded from the process of reaching a majority consensus. We demonstrated that this exclusion should not be. The proposed model reduces the gap between these consumers' ratings and the current majority rating. Fuzzy clustering is used to compute consumers' credibility. To validate this model a set of experiments are carried out.
This paper proposes and describes an active authentication model based on user profiles built from user-issued commands when interacting with GUI-based application. Previous behavioral models derived from user issued commands were limited to analyzing the user's interaction with the *Nix (Linux or Unix) command shell program. Human-computer interaction (HCI) research has explored the idea of building users profiles based on their behavioral patterns when interacting with such graphical interfaces. It did so by analyzing the user's keystroke and/or mouse dynamics. However, none had explored the idea of creating profiles by capturing users' usage characteristics when interacting with a specific application beyond how a user strikes the keyboard or moves the mouse across the screen. We obtain and utilize a dataset of user command streams collected from working with Microsoft (MS) Word to serve as a test bed. User profiles are first built using MS Word commands and identification takes place using machine learning algorithms. Best performance in terms of both accuracy and Area under the Curve (AUC) for Receiver Operating Characteristic (ROC) curve is reported using Random Forests (RF) and AdaBoost with random forests.
Threat evaluation is concerned with estimating the intent, capability and opportunity of detected objects in relation to our own assets in an area of interest. To infer whether a target is threatening and to which degree is far from a trivial task. Expert operators have normally to their aid different support systems that analyze the incoming data and provide recommendations for actions. Since the ultimate responsibility lies in the operators, it is crucial that they trust and know how to configure and use these systems, as well as have a good understanding of their inner workings, strengths and limitations. To limit the negative effects of inadequate cooperation between the operators and their support systems, this paper presents a design proposal that aims at making the threat evaluation process more transparent. We focus on the initialization, configuration and preparation phases of the threat evaluation process, supporting the user in the analysis of the behavior of the system considering the relevant parameters involved in the threat estimations. For doing so, we follow a known design process model and we implement our suggestions in a proof-of-concept prototype that we evaluate with military expert system designers.
Social networking sites (SNSs), with their large number of users and large information base, seem to be the perfect breeding ground for exploiting the vulnerabilities of people, who are considered the weakest link in security. Deceiving, persuading, or influencing people to provide information or to perform an action that will benefit the attacker is known as "social engineering." Fraudulent and deceptive people use social engineering traps and tactics through SNSs to trick users into obeying them, accepting threats, and falling victim to various crimes such as phishing, sexual abuse, financial abuse, identity theft, and physical crime. Although organizations, researchers, and practitioners recognize the serious risks of social engineering, there is a severe lack of understanding and control of such threats. This may be partly due to the complexity of human behaviors in approaching, accepting, and failing to recognize social engineering tricks. This research aims to investigate the impact of source characteristics on users' susceptibility to social engineering victimization in SNSs, particularly Facebook. Using grounded theory method, we develop a model that explains what and how source characteristics influence Facebook users to judge the attacker as credible.
The aim of this study is to examine the utility of physiological compliance (PC) to understand shared experience in a multiuser technological environment involving active and passive users. Common ground is critical for effective collaboration and important for multiuser technological systems that include passive users since this kind of user typically does not have control over the technology being used. An experiment was conducted with 48 participants who worked in two-person groups in a multitask environment under varied task and technology conditions. Indicators of PC were measured from participants' cardiovascular and electrodermal activities. The relationship between these PC indicators and collaboration outcomes, such as performance and subjective perception of the system, was explored. Results indicate that PC is related to group performance after controlling for task/technology conditions. PC is also correlated with shared perceptions of trust in technology among group members. PC is a useful tool for monitoring group processes and, thus, can be valuable for the design of collaborative systems. This study has implications for understanding effective collaboration.
Threats to modern ICT systems are rapidly changing these days. Organizations are not mainly concerned about virus infestation, but increasingly need to deal with targeted attacks. This kind of attacks are specifically designed to stay below the radar of standard ICT security systems. As a consequence, vendors have begun to ship self-learning intrusion detection systems with sophisticated heuristic detection engines. While these approaches are promising to relax the serious security situation, one of the main challenges is the proper evaluation of such systems under realistic conditions during development and before roll-out. Especially the wide variety of configuration settings makes it hard to find the optimal setup for a specific infrastructure. However, extensive testing in a live environment is not only cumbersome but usually also impacts daily business. In this paper, we therefore introduce an approach of an evaluation setup that consists of virtual components, which imitate real systems and human user interactions as close as possible to produce system events, network flows and logging data of complex ICT service environments. This data is a key prerequisite for the evaluation of modern intrusion detection and prevention systems. With these generated data sets, a system's detection performance can be accurately rated and tuned for very specific settings.
Using one password for all web services is not secure because the leakage of the password compromises all the web services accounts, while using independent passwords for different web services is inconvenient for the identity claimant to memorize. A password manager is used to address this security-convenience dilemma by storing and retrieving multiple existing passwords using one master password. On the other hand, a password manager liberates human brain by enabling people to generate strong passwords without worry about memorizing them. While a password manager provides a convenient and secure way to managing multiple passwords, it centralizes the passwords storage and shifts the risk of passwords leakage from distributed service providers to a software or token authenticated by a single master password. Concerned about this one master password based security, biometrics could be used as a second factor for authentication by verifying the ownership of the master password. However, biometrics based authentication is more privacy concerned than a non-biometric password manager. In this paper we propose a cloud password manager scheme exploiting privacy enhanced biometrics, which achieves both security and convenience in a privacy-enhanced way. The proposed password manager scheme relies on a cloud service to synchronize all local password manager clients in an encrypted form, which is efficient to deploy the updates and secure against untrusted cloud service providers.
We propose a novel phishing detection architecture based on transparent virtualization technologies and isolation of the own components. The architecture can be deployed as a security extension for virtual machines (VMs) running in the cloud. It uses fine-grained VM introspection (VMI) to extract, filter and scale a color-based fingerprint of web pages which are processed by a browser from the VM's memory. By analyzing the human perceptual similarity between the fingerprints, the architecture can reveal and mitigate phishing attacks which are based on redirection to spoofed web pages and it can also detect “Man-in-the-Browser” (MitB) attacks. To the best of our knowledge, the architecture is the first anti-phishing solution leveraging virtualization technologies. We explain details about the design and the implementation and we show results of an evaluation with real-world data.
Despite all the current controversies, the success of the email service is still valid. The ease of use of its various features contributed to its widespread adoption. In general, the email system provides for all its users the same set of features controlled by a single monolithic policy. Such solutions are efficient but limited because they grant no place for the concept of usage which denotes a user's intention of communication: private, professional, administrative, official, military. The ability to efficiently send emails from mobile devices creates new interesting opportunities. We argue that the context (location, time, device, operating system, access network...) of the email sender appears as a new dimension we have to take into account to complete the picture. Context is clearly orthogonal to usage because a same usage may require different features depending of the context. It is clear that there is no global policy meeting requirements of all possible usages and contexts. To address this problem, we propose to define a correspondence model which for a given usage and context allows to derive a correspondence type encapsulating the exact set of required features. With this model, it becomes possible to define an advanced email system which may cope with multiple policies instead of a single monolithic one. By allowing a user to select the exact policy coping with her needs, we argue that our approach reduces the risk-taking allowing the email system to slide from a trusted one to a confident one.
In many Twitter applications, developers collect only a limited sample of tweets and a local portion of the Twitter network. Given such Twitter applications with limited data, how can we classify Twitter users as either bots or humans? We develop a collection of network-, linguistic-, and application-oriented variables that could be used as possible features, and identify specific features that distinguish well between humans and bots. In particular, by analyzing a large dataset relating to the 2014 Indian election, we show that a number of sentimentrelated factors are key to the identification of bots, significantly increasing the Area under the ROC Curve (AUROC). The same method may be used for other applications as well.
Hardware Trojan Threats (HTTs) are stealthy components embedded inside integrated circuits (ICs) with an intention to attack and cripple the IC similar to viruses infecting the human body. Previous efforts have focused essentially on systems being compromised using HTTs and the effectiveness of physical parameters including power consumption, timing variation and utilization for detecting HTTs. We propose a novel metric for hardware Trojan detection coined as HTT detectability metric (HDM) that uses a weighted combination of normalized physical parameters. HTTs are identified by comparing the HDM with an optimal detection threshold; if the monitored HDM exceeds the estimated optimal detection threshold, the IC will be tagged as malicious. As opposed to existing efforts, this work investigates a system model from a designer perspective in increasing the security of the device and an adversary model from an attacker perspective exposing and exploiting the vulnerabilities in the device. Using existing Trojan implementations and Trojan taxonomy as a baseline, seven HTTs were designed and implemented on a FPGA testbed; these Trojans perform a variety of threats ranging from sensitive information leak, denial of service to beat the Root of Trust (RoT). Security analysis on the implemented Trojans showed that existing detection techniques based on physical characteristics such as power consumption, timing variation or utilization alone does not necessarily capture the existence of HTTs and only a maximum of 57% of designed HTTs were detected. On the other hand, 86% of the implemented Trojans were detected with HDM. We further carry out analytical studies to determine the optimal detection threshold that minimizes the summation of false alarm and missed detection probabilities.
With the rapid increase in cloud services collecting and using user data to offer personalized experiences, ensuring that these services comply with their privacy policies has become a business imperative for building user trust. However, most compliance efforts in industry today rely on manual review processes and audits designed to safeguard user data, and therefore are resource intensive and lack coverage. In this paper, we present our experience building and operating a system to automate privacy policy compliance checking in Bing. Central to the design of the system are (a) Legal ease-a language that allows specification of privacy policies that impose restrictions on how user data is handled, and (b) Grok-a data inventory for Map-Reduce-like big data systems that tracks how user data flows among programs. Grok maps code-level schema elements to data types in Legal ease, in essence, annotating existing programs with information flow types with minimal human input. Compliance checking is thus reduced to information flow analysis of Big Data systems. The system, bootstrapped by a small team, checks compliance daily of millions of lines of ever-changing source code written by several thousand developers.
Sensors of diverse capabilities and modalities, carried by us or deeply embedded in the physical world, have invaded our personal, social, work, and urban spaces. Our relationship with these sensors is a complicated one. On the one hand, these sensors collect rich data that are shared and disseminated, often initiated by us, with a broad array of service providers, interest groups, friends, and family. Embedded in this data is information that can be used to algorithmically construct a virtual biography of our activities, revealing intimate behaviors and lifestyle patterns. On the other hand, we and the services we use, increasingly depend directly and indirectly on information originating from these sensors for making a variety of decisions, both routine and critical, in our lives. The quality of these decisions and our confidence in them depend directly on the quality of the sensory information and our trust in the sources. Sophisticated adversaries, benefiting from the same technology advances as the sensing systems, can manipulate sensory sources and analyze data in subtle ways to extract sensitive knowledge, cause erroneous inferences, and subvert decisions. The consequences of these compromises will only amplify as our society increasingly complex human-cyber-physical systems with increased reliance on sensory information and real-time decision cycles.Drawing upon examples of this two-faceted relationship with sensors in applications such as mobile health and sustainable buildings, this talk will discuss the challenges inherent in designing a sensor information flow and processing architecture that is sensitive to the concerns of both producers and consumer. For the pervasive sensing infrastructure to be trusted by both, it must be robust to active adversaries who are deceptively extracting private information, manipulating beliefs and subverting decisions. While completely solving these challenges would require a new science of resilient, secure and trustworthy networked sensing and decision systems that would combine hitherto disciplines of distributed embedded systems, network science, control theory, security, behavioral science, and game theory, this talk will provide some initial ideas. These include an approach to enabling privacy-utility trade-offs that balance the tension between risk of information sharing to the producer and the value of information sharing to the consumer, and method to secure systems against physical manipulation of sensed information.
Modern military forces are enabled by networked command and control systems, which provide an important interface between the cyber environment, electronic sensors and decision makers. However these systems are vulnerable to cyber attack. A successful cyber attack could compromise data within the system, leading to incorrect information being utilized for decisions with potentially catastrophic results on the battlefield. Degrading the utility of a system or the trust a decision maker has in their virtual display may not be the most effective means of employing offensive cyber effects. The coordination of cyber and kinetic effects is proposed as the optimal strategy for neutralizing an adversary's C4ISR advantage. However, such an approach is an opportunity cost and resource intensive. The adversary's cyber dependence can be leveraged as a means of gaining tactical and operational advantage in combat, if a military force is sufficiently trained and prepared to attack the entire information network. This paper proposes a research approach intended to broaden the understanding of the relationship between command and control systems and the human decision maker, as an interface for both cyber and kinetic deception activity.
Cryptographically-Curated File System (CCFS) proposed in this work supports the adoption of Information-Centric Networking. CCFS utilizes content names that span trust boundaries, verify integrity, tolerate disruption, authenticate content, and provide non-repudiation. Irrespective of the ability to reach an authoritative host, CCFS provides secure access by binding a chain of trust into the content name itself. Curators cryptographically bind content to a name, which is a path through a series of objects that map human meaningful names to cryptographically strong content identifiers. CCFS serves as a network layer for storage systems unifying currently disparate storage technologies. The power of CCFS derives from file hashes and public keys used as a name with which to retrieve content and as a method of verifying that content. We present results from our prototype implementation. Our results show that the overhead associated with CCFS is not negligible, but also is not prohibitive.
Face-to-face negotiations always benefit if the interacting individuals trust each other. But trust is also important in online interactions, even for humans interacting with a computational agent. In this article, the authors describe a behavioral experiment to determine whether, by volunteering information that it need not disclose, a software agent in a multi-issue negotiation can alleviate mistrust in human counterparts who differ in their propensities to mistrust others. Results indicated that when cynical, mistrusting humans negotiated with an agent that proactively communicated its issue priority and invited reciprocation, there were significantly more agreements and better utilities than when the agent didn't volunteer such information. Furthermore, when the agent volunteered its issue priority, the outcomes for mistrusting individuals were as good as those for trusting individuals, for whom the volunteering of issue priority conferred no advantage. These findings provide insights for designing more effective, socially intelligent agents in online negotiation settings.
This paper addresses a robust methodology for developing a statistically sound, robust prognostic condition index and encapsulating this index as a series of highly accurate, transparent, human-readable rules. These rules can be used to further understand degradation phenomena and also provide transparency and trust for any underlying prognostic technique employed. A case study is presented on a wind turbine gearbox, utilising historical supervisory control and data acquisition (SCADA) data in conjunction with a physics of failure model. Training is performed without failure data, with the technique accurately identifying gearbox degradation and providing prognostic signatures up to 5 months before catastrophic failure occurred. A robust derivation of the Mahalanobis distance is employed to perform outlier analysis in the bivariate domain, enabling the rapid labelling of historical SCADA data on independent wind turbines. Following this, the RIPPER rule learner was utilised to extract transparent, human-readable rules from the labelled data. A mean classification accuracy of 95.98% of the autonomously derived condition was achieved on three independent test sets, with a mean kappa statistic of 93.96% reported. In total, 12 rules were extracted, with an independent domain expert providing critical analysis, two thirds of the rules were deemed to be intuitive in modelling fundamental degradation behaviour of the wind turbine gearbox.
Multiple Security Domains Nondeducibility, MSDND, yields results even when the attack hides important information from electronic monitors and human operators. Because MSDND is based upon modal frames, it is able to analyze the event system as it progresses rather than relying on traces of the system. Not only does it provide results as the system evolves, MSDND can point out attacks designed to be missed in other security models. This work examines information flow disruption attacks such as Stuxnet and formally explains the role that implicit trust in the cyber security of a cyber physical system (CPS) plays in the success of the attack. The fact that the attack hides behind MSDND can be used to help secure the system by modifications to break MSDND and leave the attack nowhere to hide. Modal operators are defined to allow the manipulation of belief and trust states within the model. We show how the attack hides and uses the operator's trust to remain undetected. In fact, trust in the CPS is key to the success of the attack.