Skip to Main Content Area
  • CPS-VO
    • Contact Support
  • Browse
    • Calendar
    • Announcements
    • Repositories
    • Groups
  • Search
    • Search for Content
    • Search for a Group
    • Search for People
    • Search for a Project
    • Tagcloud
      
 
Not a member?
Click here to register!
Forgot username or password?
 
Home
National Science Foundation

Cyber-Physical Systems Virtual Organization

Read-only archive of site from September 29, 2023.

CPS-VO

augments data

biblio

Visible to the public A Learning-based Data Augmentation for Network Anomaly Detection

Submitted by aekwall on Mon, 03/29/2021 - 11:58am
  • divide-augment-combine strategy
  • sampling methods
  • class imbalance problem
  • network anomaly detection
  • attack instances
  • augments data
  • data augmentation
  • data instances
  • Divide-Augment-Combine
  • Gallium nitride
  • generative adversarial model
  • high-quality data
  • learning-based data augmentation
  • network traffic traces
  • public network datasets
  • statistical sampling
  • synthetic instances
  • Generative Adversarial Learning
  • pattern classification
  • Scalability
  • Data models
  • Support vector machines
  • learning (artificial intelligence)
  • machine learning
  • Resiliency
  • pubcrawl
  • neural nets
  • security of data
  • Anomaly Detection
  • network traffic
  • Generators
  • generative adversarial networks
  • generative adversarial network
  • Predictive Metrics
  • data handling

Terms of Use  |  ©2023. CPS-VO