Software & systems engineering and their applications.
file
Abstract:
A primary objective of this research is to establish a foundational framework for smart grids that enables significant penetration of renewable DERs and facilitates flexible deployments of plug-and-play applications. Under this common theme, the PIs have taken a data analytics perspective to explore rigorous approaches in modeling, optimization, and control of wind generation integration.
file
Abstract:
The SDB project seeks to design, engineer, and evaluate the foundational information substrate for cyberphysical systems in a concrete, canonical form - creation of efficient, agile, model- driven, human-centered building systems. Modern commercial buildings provide increasingly integrated Building Management Systems, but are typically closed or based on proprietary interfaces, are difficult to extend, and it is expensive to add new capabilities.
file
Abstract:
This project has two closely related objectives. The first is to design and evaluate new Cyber Transportation System (CTS) architectures, protocols and applications for improved traffic safety and traffic operations. The second is to design and develop an integrated traffic-driving-networking simulator. The project takes a multi-disciplinary approach that combines cyber technologies, transportation engineering and human factors.
file
Abstract:
We are developing advanced distributed monitoring and control systems for civil infrastructure. The approach employs cyber-physical co-design of wireless sensor-actuator networks and structural monitoring and control algorithms. The unified cyber-physical system architecture provides reusable middleware services for developing hierarchical structural monitoring and control systems.
file
Abstract:
Growing demands on our civil infrastructure have heightened the need for smart structural components and systems whose behavior and performance can be controlled under a variety of loading scenarios such as high winds and earthquakes.
file
Abstract:
The objective of this NSF-CPS Synergy proposal is to develop a distributed algorithmic framework, supported by a highly fault-tolerant software system, for executing critical transmission-level operations of the North American power grid using gigantic volumes of Synchrophasor data.
file
Abstract:
The project will demonstrate a holonic multi-agent system architecture (HMSA) capable of adaptively controlling future electrical power distribution systems, which are expected to include a large number of renewable power generators, energy storage devices, and advanced metering and control devices. The project will produce a general, extensible, and secure cyber architecture based on holonic multi-agent principles to support adaptive PDS.
file
Abstract:
The project is an on-going collaborative effort between Massachusetts Institute of Technology and University of Pennsylvania since 2011.
file
Abstract:
This cross-disciplinary project brings together a team of engineering and computer science researchers to create, validate, and demonstrate the value of new techniques for ensuring that systems composed of combinations of hardware, software, and people are designed to operate in a truly synergistic and safe fashion.