Applications of CPS technologies involving the power generation and/or energy conservation.
file
Having a shared and accurate sense of time is critical to distributed Cyber-Physical Systems (CPS)
and the Internet of Things (IoT). Thanks to decades of research in clock technologies and
synchronization protocols, it is now possible to measure and synchronize time across distributed
systems with unprecedented accuracy. However, applications have not benefited to the same
extent due to limitations of the system services that help manage time, and hardware-OS and
file
The smart grid is a large-scale, societal-level hybrid cyber-physical system with tight coupling between cyber and physical components. Ensuring availability and reliability of power requires maintaining stability of the power grid even as increasing demand and uncertain renewable power sources push the power system close to its operation limit. In addition, the cyber-enabled grid has multiple entry points, leaving it highly susceptible to cyber attacks by malicious adversaries.
file
Recent progress in battery technology has made it possible to use batteries to power various physical platforms, such as ground/air/water vehicles. These platforms require hundreds/thousands of battery cells to meet their power and energy needs. Of these, automobiles, locomotives, and unmanned air vehicles (UAVs) face the most stringent environmental challenges. In particular, and of special importance to the automotive industry, is the transition from conventional powertrains to (plug-in) hybrid and electric vehicles, all of which are subject to environmental and operational variations.
file
It's common in controller design to assume that the controller reads the sensors and writes to the actuators at the same time instant. This assumption is often violated in practice because the controller executes its code sequentially on a microprocessor. If the microprocessor is "fast enough," often the controller will still work. However, if the sensing and control are done by two different devices that must communicate across a network, the resulting timing uncertainty due to network delays and clock offsets will often destabilize the controller.
file
Despite their importance within the energy sector, buildings have not kept pace with technological improvements and particularly the introduction of intelligent features. A primary obstacle in enabling intelligent buildings is their highly distributed and diffuse nature. To address this challenge, a modular approach will be investigated for building design, construction, and operation that would completely transform the building industry.
file
Large scale applications of cyber physical systems (CPS) such as commercial buildings with Building Automation System (BAS)-based demand response (DR) can play a key role in alleviating demand peaks and associated grid stress, increased electricity unit cost, and carbon emissions. However, benefits of BAS alone are often limited because their demand peak reduction cannot be maintained long enough without unduly affecting occupant comfort. This project seeks to develop control algorithms to closely integrate battery storage-based DR with existing BAS capabilities.