Skip to Main Content Area
  • CPS-VO
    • Contact Support
  • Browse
    • Calendar
    • Announcements
    • Repositories
    • Groups
  • Search
    • Search for Content
    • Search for a Group
    • Search for People
    • Search for a Project
    • Tagcloud
      
 
Not a member?
Click here to register!
Forgot username or password?
 
Home
National Science Foundation

Cyber-Physical Systems Virtual Organization

Read-only archive of site from September 29, 2023.

CPS-VO

1-norm minimization

biblio

Visible to the public Robust Hashing With Local Models for Approximate Similarity Search

Submitted by BrandonB on Wed, 05/06/2015 - 11:55am
  • robust hashing
  • Nickel
  • optimal hash code
  • query data point
  • query hash code
  • query processing
  • real-life datasets
  • RHLM
  • robust hash function learning
  • loss function
  • robust hashing-with-local models
  • Robustness
  • search efficiency
  • search quality
  • Training
  • Training data
  • training data points
  • training dataset
  • high-dimensional data
  • approximate similarity search
  • binary hash codes
  • computational complexity
  • database point
  • Databases
  • dimensionality curse
  • feature dimensionality
  • file organisation
  • 1-norm minimization
  • high-dimensional data point mapping
  • indexing
  • l2
  • Laplace equations
  • Linear programming
  • local hashing model
  • local structural information

Terms of Use  |  ©2023. CPS-VO