University of Pennsylvania
file
Abstract:
The main goal of this project is to design algorithms and architectures for large scale integration of electrical vehicles in power grids. In particular the following topics will be explored:
file
Abstract:
This research is focused on the co-design of platform and control of Cyber-Physical Systems (CPS). Limited and shared resources among several control and non-control applications in CPS introduce delays in transmitted messages, which in turn can degrade system performance or even cause instabilities. While a worst-case delay based design can accommodate such delays, they often are pessimistic and lead to an overdesign as worst case delays happen infrequently.
file
Abstract:
Medical devices are typically developed as stand-alone units. Current industrial Verification and Validation (V&V) tech- niques primarily target stand-alone systems. Moreover, the US Food and Drug Administration's (FDA) regulatory clearance processes are designed to approve such devices that are integrated by a single manufacturer with complete control over all components.
file
Abstract:
Formal design and analysis of embedded control software relies on mathematical models of dynamical systems, and such models can be hard to obtain. In this paper, we focus on automatic construction of piecewise affine models from input-output data.
file
Abstract:
Modern cyber-physical applications appearing in, e.g., industrial and building automation, often utilize wireless communication to transfer information between sensors, controllers, and actuators. The wireless devices used to carry out the communication, however, are characterized by resource constraints, e.g., limited battery power resources for transmission. To achieve a desirable balance between control application performance and resource utilization, efficient resource management mechanisms are necessary.
file
Abstract:
With the increasing popularity of mobile computing, cyber physical systems are merging into major mobile systems of our society, such as public transportation, supply chain systems, health and wellness, and taxi networks. Mobile CPSs interact with phenomena of interest at different locations and environments, and where the context information (e.g., network availability and connectivity) about these physical locations might not be available.
file
Recent years have seen medical devices go from being monolithic to a collection of integrated systems. Modern medical device systems have thus become a distinct class of cyber-physical systems called Medical Cyber Physical Systems (MCPS), featuring complex and close interaction of sophisticated treatment algorithms with the physical aspects of the system, and especially thepatient whose safety is of the utmost concern. The goal of this project is to develop a new paradigm for the design and implementation of safe, secure, and reliable MCPS, which includes: