Georgia Tech

file

Visible to the public Reflections on Model Integrated Computing and Cyber-Physical Systems

ABSTRACT

We review the development of model integrated computing (MIC) for cyber-physical systems. MIC provided a much higher level of abstraction than was used for real-time embedded computing systems. The introduction of MIC allowed for new types of analysis and synthesis to be performed, leading to improved CPS design methodologies.

file

Visible to the public Converting Multi-Axis Machine Tools into Subtractive 3D Printers by using Intelligent Discrete Geometry Data Structures

Abstract:

This grant provides funding for the formulation of a data model, and trajectory planning platform and methodology to execute a fully digital 3D, 5-axis machining capability. Research will be performed on methods for utilizing multiple Graphical Processor Units (GPUs), which are readily available, parallel digital processing hardware in these calculations.

file

Visible to the public Credible Autocoding and Verification of Embedded Software (CrAVES)

Abstract:

The CrAVES project seeks to lay down intellectual foundations for credible autocoding of embedded systems, by which graphical control system specifications that satisfy given open-loop and closed-loop properties are automatically transformed into source code guaranteed to satisfy the same properties. The goal is that the correctness of these codes can be easily and independently verified by dedicated proof checking systems.

file

Visible to the public CrAVES : Credible Autocoding and Verification of Embedded Software

Abstract:

The CrAVES project seeks to lay down intellectual foundations for credible autocoding of embedded systems, by which model-level control system specifications that satisfy given open-loop and closed-loop properties are automatically transformed into source code guaranteed to satisfy the same properties. The goal is that the correctness of these codes can be easily and independently verified by dedicated proof checking systems.

file

Visible to the public Hybrid Control Tools for Power Management and Optimization in Cyber-Physical Systems

Abstract:

This project explores balancing performance considerations and power consumption in cyber-physical systems, through algorithms that switch among different modes of operation (e.g., low-power/high-power, on/off, or mobile/static) in response to environmental conditions. The main theoretical contribution is a computational, hybrid optimal control framework that is connected to a number of relevant target applications where physical modeling, control design, and software architectures all constitute important components.

file

Visible to the public Robust Algorithms for Mobile Robots to Learn Human Preferred Movement in a Hallway

Abstract:

We propose a dual expert algorithm (DEA) to assist a mobile robot in learning a person's preference of moving direction when the human encounters the robot in a typical hallway. When in use in hospital and office environments, a mobile robot will routinely encounter people who are not its primary user. These people need to feel comfortable around the robot for its implementation to be a success.

file

Visible to the public Semantics of Optimization for Real Time Intelligent Embedded Systems (SORTIES)

Abstract:

Optimization algorithms used in a real-time and safety-critical context offer the potential for considerably advancing robotic and autonomous systems by improving their ability to execute complex missions. However, this promise cannot happen without proper attention to the considerably stronger operational constraints that real time, safety-critical applications must meet, unlike their non-real-time, desktop counterparts.