Skip to Main Content Area
  • CPS-VO
    • Contact Support
  • Browse
    • Calendar
    • Announcements
    • Repositories
    • Groups
  • Search
    • Search for Content
    • Search for a Group
    • Search for People
    • Search for a Project
    • Tagcloud
      
 
Not a member?
Click here to register!
Forgot username or password?
 
Home
National Science Foundation

Cyber-Physical Systems Virtual Organization

Read-only archive of site from September 29, 2023.

CPS-VO

malicious JS code detection

biblio

Visible to the public A Machine Learning Approach to Malicious JavaScript Detection using Fixed Length Vector Representation

Submitted by grigby1 on Mon, 12/10/2018 - 11:38am
  • pubcrawl
  • malicious JavaScript detection
  • malicious JS code detection
  • malicious JS codes
  • Metrics
  • neural nets
  • neural network model
  • Neural networks
  • pattern classification
  • plugin software
  • Predictive models
  • machine learning
  • resilience
  • Resiliency
  • Support vector machines
  • Vectors
  • web applications
  • Web site
  • Web sites
  • Zero day attacks
  • Zero-day attacks
  • drive-by-download attacks
  • Browsers
  • classifier model
  • composability
  • Context modeling
  • cyberattacks
  • Cybersecurity
  • D3M Dataset
  • defense
  • Doc2Vec
  • Doc2Vec features
  • authoring languages
  • Drive-by-Download Data
  • feature extraction
  • feature learning
  • features extraction
  • fixed length vector representation
  • invasive software
  • Java
  • JavaScript
  • learning (artificial intelligence)

Terms of Use  |  ©2023. CPS-VO