Skip to Main Content Area
  • CPS-VO
    • Contact Support
  • Browse
    • Calendar
    • Announcements
    • Repositories
    • Groups
  • Search
    • Search for Content
    • Search for a Group
    • Search for People
    • Search for a Project
    • Tagcloud
      
 
Not a member?
Click here to register!
Forgot username or password?
 
Home
National Science Foundation

Cyber-Physical Systems Virtual Organization

Read-only archive of site from September 29, 2023.

CPS-VO

nonlinearly separable patterns

biblio

Visible to the public An Energy-Efficient Stochastic Computational Deep Belief Network

Submitted by grigby1 on Wed, 03/06/2019 - 4:29pm
  • random number generation
  • high energy consumption
  • Human behavior
  • learning (artificial intelligence)
  • Metrics
  • neural nets
  • Neurons
  • nonlinearly separable patterns
  • pattern classification
  • policy-based governance
  • pubcrawl
  • Hardware
  • random number generators
  • rectifier linear unit
  • resilience
  • Resiliency
  • RNGs
  • SC-DBN design
  • Scalability
  • Stochastic computing
  • Stochastic processes
  • DNNs
  • belief networks
  • Biological neural networks
  • Cognitive Computing
  • collaboration
  • composability
  • computation speed
  • Correlation
  • Deep Belief Network
  • deep neural networks
  • approximate SC activation unit
  • effective machine learning models
  • Electronic mail
  • energy consumption
  • energy-efficient deep belief network
  • energy-efficient stochastic computational deep belief network
  • fixed point arithmetic
  • fixed-point implementation
  • floating point arithmetic
  • floating-point design

Terms of Use  |  ©2023. CPS-VO