Skip to Main Content Area
  • CPS-VO
    • Contact Support
  • Browse
    • Calendar
    • Announcements
    • Repositories
    • Groups
  • Search
    • Search for Content
    • Search for a Group
    • Search for People
    • Search for a Project
    • Tagcloud
      
 
Not a member?
Click here to register!
Forgot username or password?
 
Home
National Science Foundation

Cyber-Physical Systems Virtual Organization

Read-only archive of site from September 29, 2023.

CPS-VO

deep learning framework

biblio

Visible to the public DeepMal: A CNN-LSTM Model for Malware Detection Based on Dynamic Semantic Behaviours

Submitted by aekwall on Mon, 02/08/2021 - 1:41pm
  • cyber-criminals
  • recurrent neural nets
  • Human Factors
  • LSTM
  • Compositionality
  • high-level abstractions
  • CNN-LSTM model
  • Cyber Dependencies
  • component-CNN
  • convolution
  • deep learning framework
  • DeepMal
  • dynamic semantic behaviours
  • evil intentions
  • locally spatial correlations
  • malicious programs
  • malware classification task
  • sequential longterm dependency
  • Metrics
  • malware
  • malware detection
  • invasive software
  • Data models
  • feature extraction
  • learning (artificial intelligence)
  • Resiliency
  • pubcrawl
  • Scalability
  • Neurons
  • pattern classification
  • Training
  • machine learning
  • convolutional neural nets
  • natural language processing
  • NLP techniques
biblio

Visible to the public Malware Classification with Deep Convolutional Neural Networks

Submitted by grigby1 on Mon, 06/10/2019 - 2:01pm
  • learning (artificial intelligence)
  • Support vector machines
  • Resiliency
  • resilience
  • pubcrawl
  • privacy
  • Microsoft malware
  • Metrics
  • malware classification
  • malware binaries
  • malware
  • Malimg malware
  • machine learning approaches
  • machine learning
  • Learning systems
  • challenging malware classification datasets
  • invasive software
  • image classification
  • Human behavior
  • grayscale images
  • Gray-scale
  • feedforward neural nets
  • deep learning framework
  • deep learning approach
  • deep learning
  • deep convolutional neural networks
  • convolutional neural networks
  • convolution
  • computer architecture
  • CNN

Terms of Use  |  ©2023. CPS-VO