Skip to Main Content Area
  • CPS-VO
    • Contact Support
  • Browse
    • Calendar
    • Announcements
    • Repositories
    • Groups
  • Search
    • Search for Content
    • Search for a Group
    • Search for People
    • Search for a Project
    • Tagcloud
      
 
Not a member?
Click here to register!
Forgot username or password?
 
Home
National Science Foundation

Cyber-Physical Systems Virtual Organization

Read-only archive of site from September 29, 2023.

CPS-VO

oblique random forest paradigm

biblio

Visible to the public Intelligent Malware Detection Using Oblique Random Forest Paradigm

Submitted by grigby1 on Mon, 06/10/2019 - 2:02pm
  • resilience
  • malware classification datasets
  • Metrics
  • Oblique Random Forest
  • oblique random forest ensemble learning technique
  • oblique random forest paradigm
  • pattern classification
  • privacy
  • pubcrawl
  • malware classification
  • Resiliency
  • security community
  • signature-based detection techniques
  • stealthy malware
  • Support vector machines
  • Trojan horses
  • unknown malware
  • behavior-based detection techniques
  • malware behavior
  • machine learning solutions
  • machine learning
  • learning (artificial intelligence)
  • invasive software
  • intelligent malware detection
  • Human behavior
  • Forestry
  • feature extraction
  • false positive rate
  • Decision trees
  • decision tree learning models
  • computerized online applications
  • comprehensive malware detection
  • classification accuracy

Terms of Use  |  ©2023. CPS-VO